2. Benchmark solution#

2.1. Calculation method used for the reference solution#

\(T(r)={T}_{i}+\Phi \mathrm{log}(\frac{r}{{R}_{i}})\)

with: \(\mathrm{\{}\begin{array}{ccc}\Phi & \mathrm{=}& \frac{{T}_{e}\mathrm{-}\mathit{Ti}}{\mathrm{log}(\frac{{R}_{e}}{{R}_{i}})}\\ & & \text{les flux}\mathit{radiaux}\text{}(\lambda \frac{\mathrm{\partial }T}{\mathrm{\partial }r})\text{sur les parois du cylindre sont :}\\ {\Phi }_{i}& \mathrm{=}& \text{+}\lambda \mathrm{.}\frac{\Phi }{{R}_{i}}\\ {\Phi }_{e}& \mathrm{=}& \text{+}\lambda \mathrm{.}\frac{\Phi }{{R}_{e}}\end{array}\)

2.2. Benchmark results#

Temperatures and flows at points \(A\), \(B\),, \(D\), \(F\).

To test the “MASS_THER” option (operator CALC_MATR_ELEM), you must use a value given by an object JEVEUX, which corresponds to a checksum.

It is a pure numerical non-regression test.

To test, we activate the debug mode of Calcul.f90 and then we compare the values of the output fields of MASS_THER in CALC_MATR_ELEM with the same thing as the THER_LINEAIRE of the test.

2.3. Uncertainty about the solution#

Analytical solution.