Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The axisymmetric linear static mechanics problem under consideration can be solved analytically. The response to the load (volume force and surface force) is solved independently and then summed up. **Quadratic density force** :math:`{F}_{V}(r)=\alpha {r}^{2}` We consider the equilibrium equations in cylindrical coordinates: .. image:: images/Object_3.svg :width: 270 :height: 122 .. _RefImage_Object_3.svg: which are simplified, given the axial symmetry, by: .. image:: images/Object_4.svg :width: 270 :height: 122 .. _RefImage_Object_4.svg: By using the law of behavior and then the deformation-displacement relationships, we arrive at the following differential equation: .. image:: images/Object_5.svg :width: 270 :height: 122 .. _RefImage_Object_5.svg: The density force applied is of the type: fV=.r² .. _Ref497284509: The solution to the differential equation is then written as: .. image:: images/Object_6.svg :width: 270 :height: 122 .. _RefImage_Object_6.svg: .. _RefEquation 2.1-1: eq 2.1-1 The two integration constants :math:`{c}_{1}` and :math:`{c}_{2}` are determined using the boundary conditions: .. image:: images/Object_7.svg :width: 270 :height: 122 .. _RefImage_Object_7.svg: We get: .. image:: images/Object_8.svg :width: 270 :height: 122 .. _RefImage_Object_8.svg: **Surface force type pressure** :math:`{F}_{S}({R}_{\text{int}})=P` The problem to be solved is of the same nature, but with zero applied volume force: :math:`{f}_{V}=0` or :math:`\alpha =0`. The solution on the go [:ref:`éq 2.1-1 <éq 2.1-1>`] is then written: .. image:: images/Object_9.svg :width: 270 :height: 122 .. _RefImage_Object_9.svg: , having to respect the conditions: .. image:: images/Object_10.svg :width: 270 :height: 122 .. _RefImage_Object_10.svg: This results in: .. image:: images/Object_11.svg :width: 270 :height: 122 .. _RefImage_Object_11.svg: .. _RefEquation 2.1-2: Eq 2.1-2 Benchmark results ---------------------- **Digital application:** .. csv-table:: "* height", "= :math:`0.5m`;" "* inner radius", "= :math:`1m`;" "* outer radius", "= :math:`1.4m`;" "* :math:`E` ", "= :math:`10\mathrm{Pa}`;" "* :math:`\rho` ", "= :math:`1\mathrm{kg}/{m}^{3}`;" "* :math:`\nu` ", "= :math:`0.3`;" "* :math:`\alpha` ", "= :math:`1N/{m}^{5}`;" "* :math:`P` ", "= :math:`1N/{m}^{2}`." by injecting the numerical values into the solutions [:ref:`éq 2.1-1 <éq 2.1-1>`] and [:ref:`éq 2.1-2 <éq 2.1-2>`] we find after summation: .. image:: images/Object_12.svg :width: 270 :height: 122 .. _RefImage_Object_12.svg: Uncertainties about the solution ---------------------------- None (analytical reference solution).