Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- Analytical solution, *isostatic structure*. The elastic deflection, the elastic axial stresses and deformations, and the bending moment at any point on the :math:`x` axis are given by: * Load 1: force :math:`{F}_{y}=–1` .. csv-table:: ":math:`{M}_{y}(x)={F}_{y}\mathrm{.}L(1-x/L)` ", "(= :math:`E\mathrm{.}{I}_{z}\mathrm{.}{u}_{y}\text{'}\text{'}(x)` in elasticity)" ":math:`{u}_{y}(x)={F}_{y}L\mathrm{.}{x}^{2}\mathrm{.}(3-x/L)/(6\mathrm{.}{\mathrm{E.I}}_{z})` ", "(in elasticity)" ":math:`{\varepsilon }_{\mathrm{xx}}(x,y)=–{F}_{y}\mathrm{.}L(1-x/L)\mathrm{.}y/({\mathrm{E.I}}_{z})` ", "(in elasticity)" ":math:`{\sigma }_{\mathrm{xx}}(x,y)=-{F}_{y}\mathrm{.}L(1-x/L)\mathrm{.}y/{I}_{z}` ", "(in elasticity)" * Load 2: :math:`{C}_{z}=1` torque or :math:`{\mathrm{dr}}_{z}={C}_{\mathrm{z.L}}/({\mathrm{E.I}}_{z})` rotation .. csv-table:: ":math:`{M}_{y}(x)={C}_{z}` ", "(= :math:`E\mathrm{.}{I}_{z}\mathrm{.}{u}_{y}\text{'}\text{'}(x)` in elasticity)" ":math:`{u}_{y}(x)={C}_{\mathrm{z.}}{x}^{2}/(2\mathrm{.}E\mathrm{.}{I}_{z})` ", "(in elasticity)" ":math:`{\sigma }_{\mathrm{xx}}(x,y)=–{C}_{z}\mathrm{.}y/{I}_{z}` ", "(in elasticity)" ":math:`{\varepsilon }_{\mathrm{xx}}(x,y)=-{C}_{z}\mathrm{.}y/(E\mathrm{.}{I}_{z})` ", "(in elasticity)" with: :math:`L=\mathrm{L1}+\mathrm{L2}+\mathrm{L3}=30\mathrm{mm}` :math:`{I}_{z}=a\mathrm{.}{h}^{3}/12=0.25{\mathrm{mm}}^{4}` :math:`{\mathrm{dr}}_{z}=0.0006` Benchmark results ---------------------- Deflections, axial stresses and deformations and bending moments at 4 points on the axis of the beam. Uncertainty about the solution --------------------------- Analytical solution.