Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The reference solution was obtained by experimental method :ref:`4 `. In this article, a numerical simulation is also carried out. Benchmark results ---------------------- The Paris-type fatigue propagation law resulting from the tests is as follows: ------------------------------------------------------------------ :math:`\frac{\mathit{da}}{\mathit{dN}}\mathrm{=}C{(\Delta K)}^{m}` with :math:`C\mathrm{=}{10}^{\mathrm{-}\mathrm{9,2}}` and :math:`m\mathrm{=}\mathrm{3,5}`. The values of the coefficients of the Paris law are given for :math:`\Delta K` in :math:`\mathit{MPa}\mathrm{.}\sqrt{m}` and a speed :math:`\frac{\mathit{da}}{\mathit{dN}}` in :math:`m\mathrm{/}\mathit{cycle}`. ------------------------------------------------------------------------------ - After 4000 cycles, the deepest point of the crack bottom experimentally reached coast :math:`y\mathrm{=}173\mu m`. The present experimental crack background is calculated numerically after 4000 cycles. .. image:: images/10000000000002A70000021A9ABF1FF0C39F932A.png :width: 5.1201in :height: 3.1835in .. _RefImage_10000000000002A70000021A9ABF1FF0C39F932A.png: Figure2.1 1: Crack bottom Bibliographical references --------------------------- .. _RefNumPara__9929_1168901107: 1. E. Ferrié, J.Y. Buffière, W. Ludwig, W. Ludwig, A., Graouil, A., A., A., Graouil, A., L., Edwards, L., Fatigue, Crack Propagation: In situ visualization using X-ray microtomography and 3D simulation using the extended finite element method, Acta Materialia 54, pp. 1111-1122, 2006