Reference problem ===================== Geometry --------- We consider a three-dimensional bar whose dimensions are: * height: :math:`\mathit{LZ}` = 4 mm, * side: :math:`\mathit{LX}` = :math:`\mathit{LY}` = 1 mm. This bar has a plane, semi-elliptical crack. The crack is located in plane :math:`\mathit{Oxy}`. The characteristics of the cracks are as follows: * semi-major axis: :math:`a` = 119 µm * semi-minor axis: :math:`b` = 100 µm. .. image:: images/Cadre11.gif .. _RefSchema_Cadre11.gif: .. image:: images/Cadre11-1.gif .. _RefSchema_Cadre11-1.gif: .. image:: images/Cadre11-2.gif .. _RefSchema_Cadre11-2.gif: .. image:: images/Cadre11-3.gif .. _RefSchema_Cadre11-3.gif: ● A ● B ● C Figure 1.1-1: Geometry of the initial crack Material properties ----------------------- The material is isotropic elastic whose properties are: :math:`E\mathrm{=}200000\mathit{MPa}` :math:`\nu \mathrm{=}\mathrm{0,3}` Boundary conditions and loads ------------------------------------- Cyclic loading for fatigue study ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The structure is subject to a loading of fatigue under constant amplitude: traction :math:`{\sigma }_{\mathit{max}}=220\mathit{MPa}` and a ratio :math:`R\mathrm{=}\mathrm{0,1}`. The temperature is room temperature. The charging frequency is :math:`40\mathit{Hz}`. A load of 4000 cycles is applied. The traction force is applied to the upper and lower faces. The blocking of rigid modes is carried out in the following way: * point :math:`A` is stuck in the :math:`\mathit{Oy}` and :math:`\mathit{Oz}` directions, * point :math:`B` is stuck in the :math:`\mathit{Oy}` and :math:`\mathit{Oz}` directions, * point :math:`C` is stuck in the :math:`\mathit{Ox}` and :math:`\mathit{Oz}` directions. Modeling with cohesive zones: monotonic loading ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For this modeling, the load is monotonic instead of cyclical: the structure is subjected to :math:`{\sigma }_{\mathit{max}}\mathrm{=}220\mathit{MPa}` traction. The traction force is applied to the upper and lower faces. The blocking of rigid modes is carried out in the following way: * point :math:`A` is stuck in the :math:`\mathit{Oy}` and :math:`\mathit{Oz}` directions, * point :math:`B` is stuck in the :math:`\mathit{Oy}` and :math:`\mathit{Oz}` directions, * point :math:`C` is stuck in the :math:`\mathit{Ox}` and :math:`\mathit{Oz}` directions.