Benchmark solution ===================== The results of modeling B (mesh method) are taken as a reference. For the B, C, G and H models, we check the non-regression of the code in relation to the position of the crack bottom. For the A, D, E, F, I and J models **,** we check that the nodes closest to the crack bottom trace on plane :math:`(\mathrm{1,}y,z)` at the last moment of propagation have their level-set very close to zero. +--------------------------+----------+------------------------------+------------------------------+ |**Instant of propagation**|**Knot** |**Coordinate** :math:`{y}_{i}`|**Coordinate** :math:`{z}_{i}`| +--------------------------+----------+------------------------------+------------------------------+ |3 |N219 ROAD |3.14 |9.00 | + +----------+------------------------------+------------------------------+ | |N1576 ROAD|2.57 |8.70 | + +----------+------------------------------+------------------------------+ | |N1577 ROAD|2.86 |8.70 | + +----------+------------------------------+------------------------------+ | |N2636 ROAD|2.57 |9.30 | + +----------+------------------------------+------------------------------+ | |N2637 ROAD|2.86 |9.30 | +--------------------------+----------+------------------------------+------------------------------+ These nodes are those included in a capture radius equal to the largest edge of an element, centered on the trace of the crack bottom on plane :math:`(\mathrm{1,}x,y)`. These nodes are identified in the message file (:math:`\mathrm{.}\mathrm{mess}`) of modeling B and the value of their level-sets in models A, D, E, F, F, I, and J is estimated.