Benchmark solution ===================== Calculation method ----------------- No regression. Reference quantities and results ------------------------ The results of modeling B (mesh method) are taken as a reference. For B and C models, we check the non-regression of the code with respect to the position of the crack bottom. For the A, D, E and F models, we check that the nodes closest to the crack bottom trace on plane :math:`(\mathrm{1,}y,z)` at the last moment of propagation have their level-sets very close to zero. +--------------------------+----------------------+------------------------------+------------------------------+ |**Instant of propagation**|**Knot** |**Coordinate** :math:`{y}_{i}`|**Coordinate** :math:`{z}_{i}`| +--------------------------+----------------------+------------------------------+------------------------------+ |3 |:math:`\mathit{N926}` |2.33 |8.80 | + +----------------------+------------------------------+------------------------------+ | |:math:`\mathit{N1028}`|2.33 |9.00 | + +----------------------+------------------------------+------------------------------+ | |:math:`\mathit{N1130}`|2.33 |9.20 | +--------------------------+----------------------+------------------------------+------------------------------+ These nodes are those included in a capture radius equal to the largest edge of an element, centered on the trace of the crack bottom on plane :math:`(\mathrm{1,}y,z)`. These nodes are identified in the B modeling .mess and the value of their level-sets is estimated in the A, D, E, and F models.