C modeling ============== Characteristics of C modeling ------------------------------------- **z** 3D, :math:`\mathrm{H20}` and :math:`\mathrm{P15}` meshes **y, v** **F** **B** **y** **x** **A, E** **B, F** .. image:: images/1000000000000E6500000C960E3F99FDBFE68C10.png :width: 6.1417in :height: 5.3701in .. _RefImage_1000000000000E6500000C960E3F99FDBFE68C10.png: **x, u** .. csv-table:: "Point position:", ":math:`A,B` in section :math:`z=0`" "", ":math:`E,F` in the middle section :math:`z=L/2`" "", "" "Breakdown:", "20 elements depending on the length" "", "2 elements according to the radius, 8 elements according to the circumference." Since the load is symmetric, only half of the cylinder is modelled. Boundary conditions: 1. recessed ends section (:math:`u=v=w=0`) 2. symmetry conditions in plane :math:`\mathrm{xz}`: :math:`v=0` .. csv-table:: "1)", "Circumference pressure (field :math:`\mathrm{Up}`) The surface of the cylinder is divided into 8 rows of elements according to the circumference (1 row of elements represents a sector of :math:`\pi /8` radians. Since the pressure is in :math:`\mathrm{cos}\theta`, it is assumed to be uniform on each row. For any point on the corner surface :math:`\theta`, (between :math:`{\theta }_{1}` and and between and :math:`{\theta }_{2}`, :math:`{\theta }_{1}=(n–1)\frac{\pi }{8}`,, :math:`{\theta }_{2}=n\frac{\pi }{8}`, :math:`1\le n\le 8`), the pressure value assigned to the row of elements containing this point is taken to be equal to: :math:`\frac{\mathrm{p0}}{2}(\mathrm{cos}{\theta }_{1}+\mathrm{cos}{\theta }_{2})`." "", "" "2)", "Vertical gravity next :math:`x` (field :math:`\mathrm{Ug}`)" Node names: .. csv-table:: ":math:`A=\mathrm{N845}` "," :math:`B=\mathrm{N965}` "," :math:`E=\mathrm{N865}` "," :math:`F=\mathrm{N995}`" Characteristics of the mesh ---------------------------- Number of knots: 1285 Number of meshes and types: 160 HEXA20, 80 PENTA15 Tested values --------------- .. csv-table:: "**Location**", "**Value type**", "**Reference**", "**Aster**", "**% difference**" "Field :math:`\mathrm{Up}` ", "", "", "", "" "Point E", ":math:`u(m)` :math:`v(m)` ", "0. ", "—7.82 x 10—6 10—21", "" "Point :math:`F` "," :math:`u(m)` :math:`v(m)` ", "0. ", "—7.816 x 10—6 10—21", "" "Point :math:`B` "," :math:`{\sigma }_{\mathrm{xx}}(\mathrm{Pa})` :math:`{\sigma }_{\mathrm{yy}}(\mathrm{Pa})` :math:`{\sigma }_{\mathrm{zz}}(\mathrm{Pa})` ", "", "1.63 x 106 1.65 x 106 5.51 x 106", "" "Field :math:`\mathrm{Up}+\mathrm{Ug}` ", "", "", "", "" "Point :math:`E` "," :math:`u(m)` :math:`v(m)` ", "0. ", "—7.46 x 10—6 10—21", "" "Point :math:`F` "," :math:`u(m)` :math:`v(m)` ", "0. ", "—7.44 x 10—6 10—21", "" "Point :math:`B` "," :math:`{\sigma }_{\mathrm{xx}}(\mathrm{Pa})` :math:`{\sigma }_{\mathrm{yy}}(\mathrm{Pa})` :math:`{\sigma }_{\mathrm{zz}}(\mathrm{Pa})` ", "", "1.56 x 106 1.57 x 106 5.25 x 106", "" notes --------- * There are no reference values for this modeling. The results are to be compared with those of the AXIS_FOURIER :math:`(A,B,D)` models. * At point :math:`B` (located in the plane of symmetry), we have: :math:`{\sigma }_{\mathrm{rr}}={\sigma }_{\mathrm{xx}}`, :math:`{\sigma }_{\theta \theta }={\sigma }_{\mathrm{yy}}`