Reference problem ===================== Geometry --------- We consider a cube with side :math:`\mathrm{2L}` and a lens-shaped crack with radius :math:`R` such as :math:`\frac{L}{R}\mathrm{=}5` and central angle :math:`\alpha \mathrm{=}\frac{\pi }{4}` (see). The equation characteristic of the shape of the crack surface is: :math:`{x}^{2}+{y}^{2}+{(z\mathrm{-}R)}^{2}\mathrm{=}{R}^{2}` with :math:`0\mathrm{\le }z\mathrm{\le }(1\mathrm{-}\mathrm{cos}\alpha )R`. We pose :math:`a\mathrm{=}R\mathrm{sin}\alpha`. The characteristic equation of the crack background is: ---------------------------------------- :math:`{x}^{2}+{y}^{2}\mathrm{=}{a}^{2}` with :math:`z\mathrm{=}(1\mathrm{-}\mathrm{cos}\alpha )R` .. image:: images/1000000000000445000002EBAB849099C5E163DF.png :width: 5.6929in :height: 3.8898in .. _RefImage_1000000000000445000002EBAB849099C5E163DF.png: Figure 1: geometry of the cracked cube Material properties ----------------------- The material is elastic isotropic in properties: :math:`E\mathrm{=}210000\mathit{MPa}` :math:`\mathrm{\nu }=\mathrm{0,22}` Boundary conditions and loads ------------------------------------- The cube is subjected to hydrostatic tension :math:`\sigma`.