1. Reference problem#
1.1. Geometry#
We define six reinforcement layers (one per side of the cube):
\(\mathrm{GEOX}\) (2 tablecloths): sides \(\mathrm{NO1NO4NO8NO5}\) and \(\mathrm{NO2NO6NO7NO3}\)
\(\mathrm{GEOY}\) (2 tablecloths): sides \(\mathrm{NO1NO2NO6NO5}\) and \(\mathrm{NO4NO3NO7NO8}\)
\(\mathrm{GEOZ}\) (2 tablecloths): sides \(\mathrm{NO1NO2NO3NO4}\) and \(\mathrm{NO5NO6NO7NO8}\)
1.2. Material properties#
For the full cube:
Modeling |
\(A\) |
|
|
|
|
\(E(\mathrm{Pa})\) |
2 |
2 |
2 |
2E14 |
2E14 |
\(\nu\) |
0 |
0 |
0 |
0 |
For reinforcement layers (all models combined)
\(E=2E11\mathrm{Pa}\), \(\nu =0\)
Table \(\mathrm{GEOX}\): section per linear meter \(0.01{m}^{2}/\mathrm{ml}\), eccentricity 0, orientation (ANGL_REP) \((30;0)\)
Table \(\mathrm{GEOY}\): section per linear meter \(0.02{m}^{2}/\mathrm{ml}\), eccentricity 0, orientation (ANGL_REP) \((0;40)\)
Table \(\mathrm{GEOZ}\): section per linear meter \(0.03{m}^{2}/\mathrm{ml}\), eccentricity 0, orientation (ANGL_REP) \((\mathrm{15 };70)\)
1.3. Boundary conditions and loads#
The boundary conditions are as follows:
\(\mathrm{DX}=0\) on the side \(\mathrm{NO2NO3NO7NO6}\)
\(\mathrm{DY}=0\) on the side \(\mathrm{NO1NO2NO6NO5}\)
\(\mathrm{DZ}=0\) on the side \(\mathrm{NO1NO2NO3NO4}\)
The load is applied in an increment as follows (imposed movements):
\(\mathrm{DX}=1\) on the side \(\mathrm{NO1NO4NO8NO5}\)
\(\mathrm{DY}=2\) on the side \(\mathrm{NO4NO3NO7NO8}\)
\(\mathrm{DZ}=3\) on the side \(\mathrm{NO5NO6NO7NO8}\)