Benchmark solution ===================== Calculation method ------------------ The calculation is analytical. We used the computer calculation program Mathematica to do it. We know that the field of movement is: :math:`\mathrm{dX}=\mathrm{2x}+\mathrm{3y}+\mathrm{4z}` :math:`\mathrm{dY}=\mathrm{3x}+\mathrm{5y}+\mathrm{6z}` :math:`\mathrm{dZ}=\mathrm{4x}+\mathrm{6y}+\mathrm{7z}` The deformation field :math:`{\varepsilon }_{G}` in the global coordinate system is therefore constant and equal to: .. image:: images/Object_6.svg :width: 98 :height: 76 .. _RefImage_Object_6.svg: Let :math:`P` be the transition matrix allowing a vector to pass from the global coordinate system :math:`(A,X,Y,Z)` to the local coordinate system :math:`(A,L,N,T)`. Either .. image:: images/Object_7.svg :width: 98 :height: 76 .. _RefImage_Object_7.svg: the deformation tensor in the local coordinate system. We have: :math:`{\varepsilon }_{L}\mathrm{=}P\mathrm{\cdot }{\varepsilon }_{G}\mathrm{\cdot }{P}^{T}` The Hooke tensor .. image:: images/Object_9.svg :width: 98 :height: 76 .. _RefImage_Object_9.svg: is known in the local coordinate system, or .. image:: images/Object_10.svg :width: 98 :height: 76 .. _RefImage_Object_10.svg: the stress tensor in this coordinate system. We have: .. image:: images/Object_11.svg :width: 98 :height: 76 .. _RefImage_Object_11.svg: We get the tensor .. image:: images/Object_12.svg :width: 98 :height: 76 .. _RefImage_Object_12.svg: constraints in the global frame of reference by: .. image:: images/Object_13.svg :width: 98 :height: 76 .. _RefImage_Object_13.svg: In the case where a temperature field is applied, the equations above are modified as follows: The field of deformations .. image:: images/Object_14.svg :width: 98 :height: 76 .. _RefImage_Object_14.svg: in the global frame of reference is always the same: .. image:: images/Object_15.svg :width: 98 :height: 76 .. _RefImage_Object_15.svg: Either .. image:: images/Object_16.svg :width: 98 :height: 76 .. _RefImage_Object_16.svg: the deformation tensor in the local coordinate system. We have: .. image:: images/Object_17.svg :width: 98 :height: 76 .. _RefImage_Object_17.svg: The tensor of mechanical deformations in the local coordinate system is therefore equal to: .. image:: images/Object_18.svg :width: 98 :height: 76 .. _RefImage_Object_18.svg: with .. image:: images/Object_19.svg :width: 98 :height: 76 .. _RefImage_Object_19.svg: , the other components being zero The Hooke tensor .. image:: images/Object_20.svg :width: 98 :height: 76 .. _RefImage_Object_20.svg: is known in the local coordinate system. Either .. image:: images/Object_21.svg :width: 98 :height: 76 .. _RefImage_Object_21.svg: the stress tensor in this coordinate system. We have: .. image:: images/Object_22.svg :width: 98 :height: 76 .. _RefImage_Object_22.svg: We get the tensor .. image:: images/Object_23.svg :width: 98 :height: 76 .. _RefImage_Object_23.svg: constraints in the global frame of reference by: .. image:: images/Object_24.svg :width: 98 :height: 76 .. _RefImage_Object_24.svg: Benchmark results ---------------------- They are obtained by performing the operations described above with Mathematica. Uncertainties about the solution ---------------------------- The uncertainty is zero because the solution is analytical. Bibliographical references --------------------------- For the description of Hooke matrices for transverse isotropic and orthotropic materials for 3D models, plane stresses and plane deformations, the reference chosen was: *'Hooke matrix for orthotropic materials* '. Internal report applications in Mechanics No. 79‑018 by Jean-Claude Masson CISI.