Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The reference solution comes from that given in sheet SSLV07 /89 of guide VPCS (considering in addition a transverse isotropic elastic matrix). The analytical expression for the solution is as follows: Travel: :math:`u=-\frac{{\nu }_{\text{NL}}\rho gxz}{{E}_{N}}` :math:`v=-\frac{{\nu }_{\text{NL}}\rho gyz}{{E}_{N}}` :math:`w=\frac{\rho g{z}^{2}}{2{E}_{N}}+\frac{\rho g{\nu }_{\text{NL}}}{2{E}_{N}}({x}^{2}+{y}^{2})-\frac{\rho g{L}^{2}}{2{E}_{N}}` Constraints: :math:`{\sigma }_{\mathrm{zz}}=\rho gz` :math:`{\sigma }_{\mathrm{zz}}={\sigma }_{\mathrm{yy}}={\sigma }_{\mathrm{xy}}={\sigma }_{\mathrm{yz}}={\sigma }_{\mathrm{zx}}=0` .. image:: images/10001D9C0000124B000012660B4559D5A08A05E3.svg :width: 235 :height: 237 .. _RefImage_10001D9C0000124B000012660B4559D5A08A05E3.svg: Benchmark results ---------------------- Move points :math:`B`, :math:`C`, :math:`D`, :math:`E`, and :math:`X`. Constraints :math:`{\sigma }_{\mathrm{zz}}` in :math:`A` and :math:`E` Uncertainty about the solution --------------------------- Exact analytical results. Bibliographical references --------------------------- 1. TIMOSHENKO (S.P) Theory of elasticity - Paris - Librairie Polytechnique Ch. Béranger, p.279 to 282 (1961) 2. S.W. TSAI, H.T. HAHN - Introduction to composite materials. Technomic Publishing Company (1980).