Reference problem ===================== Geometry --------- .. image:: images/10001DC600001F36000016BD83183B747E7F6D66.svg :width: 402 :height: 293 .. _RefImage_10001DC600001F36000016BD83183B747E7F6D66.svg: Coordinates of points (in meters): .. csv-table:: "", ":math:`A` "," :math:`B` "," :math:`C` "," "," :math:`D` "," :math:`E` "," :math:`X`" ":math:`x` ", "0. ", "0. ", "0.5", "0.5", "0.5", "0. ", "0." ":math:`y` ", "0. ", "0. ", "0. ", "0. ", "0. ", "0.5" ":math:`z` ", "3. ", "0. ", "0. ", "3. ", "1.5", "3." Material properties ----------------------- Modules of YOUNG in the :math:`\mathrm{xy}` plan and the :math:`z` direction: :math:`{E}_{L}=5.{10}^{11}\mathrm{Pa}`, :math:`{E}_{N}=2.{10}^{11}\mathrm{Pa}`. Coefficient of POISSON relating to the :math:`\mathrm{xy}` plan and the :math:`z` direction: :math:`{\nu }_{\text{LT}}=0.1`, :math:`{\nu }_{\text{LN}}=0.3`. Shear module relating to direction :math:`z`: :math:`{G}_{\text{LN}}=7.69231{10}^{10}\mathrm{Pa}`. Density: :math:`\rho =7800\mathrm{kg}/{m}^{3}`. Boundary conditions and loads ------------------------------------- Point :math:`A`: (:math:`u=v=w=0`, :math:`{\theta }_{x}={\theta }_{y}={\theta }_{z}=0`) Own weight along axis :math:`z`: :math:`\rho gz` Uniform tensile stress for the upper side: :math:`{\sigma }_{z}=\rho gL=+229554.\mathrm{Pa}`