3. Modeling A#

3.1. Characteristics of modeling#

\(A\mathrm{=}\mathit{N01099}\) (\(s=0.\))

\(B=\mathrm{N01259}\) (\(s=26.68\))

\(C=\mathrm{N01179}\) (\(s=\mathrm{18,0}\); \(\mathrm{\alpha }=\mathrm{0,77}\approx \mathrm{\pi }/4\))

Loading: Unit pressure distributed on the face of the block opposite the plane of the lip:

\(P=\mathrm{1.MPa}\) in the \(Z\mathrm{=}\mathrm{1250.mm}\) plan.

3.2. Characteristics of the mesh#

Number of knots: 20567

Number of meshes and types: 160 PENTA15, 175 PYRAM13, 175, 9383 TETRA10 and 1290 HEXA20

3.3. Tested sizes and results#

The values tested are:

  • the local energy release rate \(g\) in all the nodes at the bottom of the crack (option G of CALC_G). These values are tested for integration rings defined by variable radii (R_ INF_FO and R_ SUP_FO) or by the number of layers (NB_COUCHE_INF and NB_COUCHE_SUP).

  • the local energy recovery rate \(g\) for points A and B at the bottom of the crack with the calculation operator POST_K1_K2_K3.

  • the stress intensity factor \({K}_{I}\), calculated at the same nodes of the crack bottom as the energy release rate (options K and KJ of CALC_G). In the case of the KJ option, we also highlight that when the calculated G value is negative, we have \({K}_{J}=0\) (by convention).

  • the \({G}_{\mathit{IRWIN}}\) energy return rate calculated from \({K}_{I}\) and the Irwin formula

In the case of the refund rate \({G}_{\mathit{IRWIN}}\), we ensure that when the value of G calculated

The mesh includes only one of the lips of the crack, it is therefore necessary to use the keyword “SYME” to automatically multiply by 2 in the Aster calculation the energy restoration rate calculated by virtual extension of the single lip.

Identification

Reference

\(\text{\%}\) tolerance

\(g(A)\) crown \({C}_{1}\) (“LEGENDRE”)

7.171 10-5

1

\(g(A)\) crown \({C}_{2}\) (“LEGENDRE”)

7.171 10-5

1

\(g(A)\) crown \({C}_{1}\) (” LINEAIRE “)

7.171 10-5

1

\(g(A)\) crown \({C}_{2}\) (” LINEAIRE “)

7.171 10-5

1

\({G}_{\mathit{IRWIN}}(A)\) crown \({C}_{2}\) (” LEGENDRE “)

7.171 10-5

1

\({G}_{\mathit{IRWIN}}(A)\) crown \({C}_{2}\) (” LINEAIRE “)

7.171 10-5

1

\({G}_{\mathit{IRWIN}}(A)\) POST_K1_K2_K3

7.171 10-5

4

\(g(B)\) crown \({C}_{1}\) (“LEGENDRE”)

1.721 10-5

10

\(g(B)\) crown \({C}_{2}\) (“LEGENDRE”)

1.721 10-5

10

\(g(B)\) crown \({C}_{1}\) (” LINEAIRE “)

1.721 10-5

1

\(g(B)\) crown \({C}_{2}\) (” LINEAIRE “)

1.721 10-5

1

\({G}_{\mathit{IRWIN}}(B)\) crown \({C}_{2}\) (” LEGENDRE “)

1.721 10-5

4

\({G}_{\mathit{IRWIN}}(B)\) crown \({C}_{2}\) (” LINEAIRE “)

1.721 10-5

6

\({G}_{\mathit{IRWIN}}(B)\) POST_K1_K2_K3

1.721 10-5

3

\(g(C)\) crown \({C}_{1}\) (“LEGENDRE”)

5.215 10-5

1

\(g(C)\) crown \({C}_{2}\) (“LEGENDRE”)

5.215 10-5

1

\(g(C)\) crown \({C}_{1}\) (” LINEAIRE “)

5.215 10-5

1

\(g(C)\) crown \({C}_{2}\) (” LINEAIRE “)

5.215 10-5

1

Identification

Reference

\(\text{\%}\) tolerance

\({K}_{J}(A)\) crown \({C}_{1}\) (“LEGENDRE”)

4.067

1

\({K}_{J}(A)\) crown \({C}_{2}\) (“LEGENDRE”)

4.067

1

\({K}_{I}(A)\) crown \({C}_{2}\) (” LINEAIRE “)

4.067

1

\({K}_{I}(A)\) crown \({C}_{2}\) (” LEGENDRE “)

4.067

1

\({K}_{J}(B)\) crown \({C}_{1}\) (“LEGENDRE”)

1.992

10

\({K}_{J}(B)\) crown \({C}_{2}\) (“LEGENDRE”)

1.992

10

\({K}_{I}(B)\) crown \({C}_{2}\) (“LEGENDRE”)

1.992

2

\({K}_{I}(B)\) crown \({C}_{2}\) (” LINEAIRE “)

1.992

5

\({K}_{J}(C)\) crown \({C}_{1}\) (“LEGENDRE”)

3.469

1

\({K}_{J}(C)\) crown \({C}_{2}\) (“LEGENDRE”)

3.469

1

\({K}_{J}(A)\) crown \({C}_{2}\) (” LINEAIRE “, “ NB_POINTS_FOND ****) **

0.0