Reference problem ===================== Geometry --------- We consider a rectangular plate with the following dimensions: * :math:`B=30\mathit{cm}` thickness * length :math:`H=3m` * height :math:`L=12m` .. image:: images/100002010000032000000116E3EC5DBFAE1C86E2.png :width: 6.0043in :height: 1.8217in .. _RefImage_100002010000032000000116E3EC5DBFAE1C86E2.png: Figure 1. Geometry of the rectangular plate. Material properties ---------------------- **Concrete** is isotropic elastic with the following material properties: * :math:`E=30000N/{\mathit{mm}}^{2}` * :math:`\nu =0.3` For the calculation of reinforcement (in Eurocode 2), the following set of properties will be considered: * Bottom and top coating :math:`{c}_{\mathit{inf}}={c}_{\text{sup}}=20\mathit{mm}` * Characteristic compressive strength of concrete :math:`{f}_{\mathit{ck}}=35\mathit{MPa}` * Work hardening limit characteristic of :math:`{f}_{\mathit{yk}}=450\mathit{MPa}` steel * Chart type (sant-e): 'B1' * Steel safety factor at ELU (Fundamental and Accidental) :math:`{\mathrm{\gamma }}_{s}=\mathrm{1,15}` * Concrete Safety Coefficient at ELU (Fundamental and Accidental) :math:`{\mathrm{\gamma }}_{c}=\mathrm{1,5}` * Boundary stress of concrete at ELS Characteristic :math:`{\mathrm{\sigma }}_{\text{c,lim}}=\mathrm{1,0}\times 35=35\mathit{MPa}` * Boundary stress of steel at ELS Characteristic :math:`{\mathrm{\sigma }}_{\text{s,lim}}=\mathrm{1,0}\times 450=450\mathit{MPa}` * Boundary stress of concrete at the ELS Quasi-Permanent :math:`{\mathrm{\sigma }}_{\text{c,lim,qp}}=\mathrm{1,0}\times 35=35\mathit{MPa}` * Steel-concrete equivalence coefficient to ELS :math:`{\mathrm{\alpha }}_{E}=\mathrm{15,0}` * Steel class: 'B'/:math:`{\mathrm{\alpha }}_{\mathit{cc}}=\mathrm{1,0}` * :math:`\mathit{FERR}\text{\_}\mathit{SYME}=\text{'}\mathit{NON}\text{'}`/:math:`\mathit{FERR}\text{\_}\mathit{COMP}=\text{'}\mathit{OUI}\text{'}`/:math:`\mathit{EPURE}\text{\_}\mathit{CISA}=\text{'}\mathit{NON}\text{'}`/:math:`\mathit{FERR}\text{\_}\mathit{MIN}=\text{'}\mathit{NON}\text{'}` * Density of :math:`{\mathrm{\rho }}_{\mathit{acier}}=7800\mathit{kg}/{m}^{3}` steel * Maximum crack opening allowed on the underside of ELS QP :math:`{w}_{\text{max,inf}}=\mathrm{0,25}\mathit{mm}` * Maximum crack opening allowed on the upper side of ELS QP :math:`{w}_{\text{max,sup}}=\mathrm{0,3}\mathit{mm}` * Load time coefficient for calculation at ELS QP :math:`{K}_{T}=\mathrm{0,4}` * Diameter of the bars following 'X' for calculation in ELS QP :math:`{\mathrm{\varphi }}_{X}=\mathrm{20,0}\mathit{mm}` * Diameter of the bars following 'Y' for calculation in ELS QP :math:`{\mathrm{\varphi }}_{Y}=\mathrm{25,0}\mathit{mm}` Boundary conditions and loads ------------------------------------- The plate is loaded in its plane by a shear force :math:`{F}_{Z}=-\mathrm{1,5}\cdot {10}^{6}N` in the first load case (nodal load "**Shearld1**" in the command file). This load case will be tested at ELS QUASI PERMANENT. A second load case (nodal load "**Shearld2**" in the command file) is obtained by applying twice this force, i.e. :math:`{F}_{Z}=-3\cdot {10}^{6}N`. This load case will be tested at ELS CARACTERISTIQUE. A third load case (nodal load "**Shearld3**" in the command file) is obtained by applying triple this force, i.e. :math:`{F}_{Z}=-\mathrm{4,5}\cdot {10}^{6}N`. This load case will be tested at ELU. The plate is then loaded into its plane by a :math:`{F}_{Y}=1\cdot {10}^{6}N` traction force ("**tractLD1**" node loading in the command file). This load case will be tested at ELS QUASI PERMANENT. A second load case (nodal load "**tractLD2**" in the command file) is obtained by applying twice this force, i.e. :math:`{F}_{Y}=2\cdot {10}^{6}N`. This load case will be tested at ELS CARACTERISTIQUE. A third load case (nodal load "**tractLD3**" in the command file) is obtained by applying triple this force, i.e. :math:`{F}_{Y}=3\cdot {10}^{6}N`. This load case will be tested at ELU. The plate is finally loaded in its plane by a compression force :math:`{F}_{Y}=-\mathrm{1,5}\cdot {10}^{6}N` in a seventh load case ("**ComprLD1**" node loading in the command file). This load case will be tested at ELS CARACTERISTIQUE. A last load case (nodal load "**ComprLD2**" in the command file) is obtained by applying twice this force, i.e. :math:`{F}_{Y}=-3\cdot {10}^{6}N`. This load case will be tested at ELU. The plate is embedded on the left side, at the opposite end of the point of application of the force (); thus, all degrees of freedom are set to zero. .. image:: images/1000020100000227000000DC547B1B1F538A532A.png :width: 4.9492in :height: 1.5008in .. _RefImage_1000020100000227000000DC547B1B1F538A532A.png: Figure 2. Blocking and loading for 'ShearlD' cases Initial conditions -------------------- The structure is initially at rest.