Modeling A ============== Characteristics of modeling ----------------------------------- We use a COQUE_AXIS model. The COQUE_AXIS models can be used both for thick plates (HENCKY - MINDLIN - REISSNER) and for thin plates (KIRCHOFF - LOVE) thanks to a penalization approach that makes it possible to neutralize or not the shear energy: this is the theory of HENCKY - MINDLIN - NAGHDI. In order to approach the LOVE - KIRCHHOFF solution numerically, it is necessary to take a sufficiently large shear coefficient (A_ CIS) to inhibit the transverse shear kinematics :math:`{\mathrm{\gamma }}_{s}`. The larger this coefficient, the more the stiffness matrix is almost singular, the more the stiffness matrix is almost singular and therefore a source of numerical instabilities. Characteristics of the mesh ---------------------------- The mesh contains 100 elements of type SEG3. Tested sizes and results ------------------------------ We test the movement in the top left corner of the plate. .. _DdeLink__2746_1257352337: .. csv-table:: "**Identification**", "**Reference type**", "**Reference value**", "**Precision**" "Point :math:`A` - :math:`\mathrm{DX}` ", "'ANALYTIQUE'", "63.9488"," 0.1%" "Point :math:`B` - :math:`\mathrm{DX}` ", "'ANALYTIQUE'", "32.000"," 0.1%" "Point :math:`C` - :math:`\mathrm{DX}` ", "'ANALYTIQUE'", "0.05120", "0.05", "0.05" "Point :math:`A` - :math:`\mathit{DRZ}` ", "'ANALYTIQUE'", "0.06583", "0.05" "Point :math:`B` - :math:`\mathit{DRZ}` ", "'ANALYTIQUE'", "41.133"," 0.1%" "Point :math:`B` - :math:`\mathit{NYY}` ", "'ANALYTIQUE'", "2.0000", "0.05" "Point :math:`B1` - :math:`\mathit{NYY}` ", "'ANALYTIQUE'", "3.84429"," 0.1%" "Point :math:`B1` - :math:`\mathit{MXX}` ", "'ANALYTIQUE'", "-4.01497 10—2"," 0.1%"