Benchmark solution ===================== For each modeling, the objective is to find the correct initial prestress tension of the cable after applying CALC_PRECONT but also to determine the maximum displacement of the plate at node :math:`D` along the :math:`z` axis after applying the pressure. Benchmark results ---------------------- To determine the maximum displacement, the theory of beams working under bending is used. For a beam embedded at one end and free at the other under distributed loading, the maximum displacement at the free end, called an arrow, is given by: :math:`f\mathrm{=}\mathrm{-}\frac{{\mathit{qL}}^{4}}{\mathrm{8EI}}` :math:`q`: the force distributed in :math:`N/m`. :math:`L`: the length of the beam in :math:`m`. :math:`E`: the Young's modulus of the plate, therefore of concrete in :math:`\mathit{Pa}`. :math:`I=\frac{{t}^{3}l}{12}`: the quadratic moment of the beam with respect to the y axis in :math:`{m}^{4}`. *For pressing force:* Thanks to its eccentricity, the cable contributes to the rigidity of the model: :math:`{(\mathit{EI})}_{\mathit{eq}}\mathrm{=}{E}_{b}\frac{{t}^{3}l}{12}+{E}_{a}{a}_{x}l\mathrm{\times }{e}_{z}^{2}` :math:`{a}_{x}=\frac{A}{\mathit{dx}}`: is the reinforcement rate. :math:`{(\mathit{EI})}_{\mathit{eq}}=13.50{\mathit{MN.m}}^{2}` The arrow under the pressure load is calculated as follows: :math:`{f}_{p}=\frac{-{P}_{0}l\times {L}^{4}}{8{(\mathit{EI})}_{\mathit{eq}}}` So: :math:`{f}_{p}=-\mathrm{0.118552m}` *For the tensioning of the pretension cable:* The tension cable then applies a compression force :math:`-{F}_{0}` and a bending moment :math:`-{e}_{z}{F}_{0}` to the free end of the plate. With the principle of superposition, the expression for normal stress is: :math:`{\sigma }_{x}=\frac{-{F}_{0}}{\mathit{tl}}(1+\frac{12{e}_{z}z}{{t}^{2}})` If we neglect the effects of the Poisson's ratio the displacement field is given by: :math:`\{\begin{array}{c}u(x,y,z)=\frac{-{F}_{0}}{{E}_{b}\mathit{tl}}(1+\frac{12{e}_{z}z}{{t}^{2}})x\\ v(x,y,z)=0\\ w(x,y,z)=\frac{{F}_{0}}{{E}_{b}\mathit{tl}}(\frac{6{e}_{z}}{{t}^{2}}{x}^{2})\end{array}` The displacements are given at the free end of the beam at node :math:`D`, i.e. in :math:`(\mathrm{4,}0.5,0)`: :math:`\{\begin{array}{c}u(x,y,z)=-\mathrm{0.375mm}\\ v(x,y,z)=0\\ w(x,y,z)=\mathrm{16.875mm}\end{array}` By superposition, the theoretical maximum displacement of the prestressed plate under the pressure force is: :math:`{f}_{\mathit{tot}}={f}_{p}+w` :math:`{f}_{\mathit{tot}}=-\mathrm{0.101677m}` Uncertainty about the solution --------------------------- Analytical solution.