Reference problem ===================== Geometry --------- We consider a square concrete tank with dimensions :math:`L\mathrm{\times }l\mathrm{\times }h\mathrm{=}10m\mathrm{\times }10m\mathrm{\times }5m` (medium to medium sheet) and :math:`0.4m` thickness. Material properties ---------------------- Isotropic linear elastic material: Young's module: :math:`E\mathrm{=}{3.10}^{4}\mathit{MPa}`, Poisson's ratio: :math:`\nu \mathrm{=}0.15`, Density: :math:`\mu \mathrm{=}2500\mathit{kg}\mathrm{/}{m}^{3}`. Boundary conditions and loads ------------------------------------- The soil stiffness density applied under the tank is :math:`50\mathit{kN}\mathrm{/}{m}^{3}`. The integral of this density based on the tank is therefore :math:`5{10}^{6}\mathit{kN}\mathrm{/}m`. This quantity is then distributed over the nodes in the base. The load consists of: * the net weight of the tank * the thrust of the water from the filled tank (constant pressure on the bottom and gradual pressure on the edges) * an overload distributed around the outline at the top of the tank (:math:`20\mathit{kN}\mathrm{/}m`) * * *