Reference problem ===================== Geometry --------- Because of the geometric and physical symmetry of the problem, only a quarter of the plate is modelled. By taking into account symmetry conditions, only symmetric buckling modes can be captured. .. image:: images/10003486000069BB000066BC48DB072974BC2319.svg :width: 606 :height: 588 .. _RefImage_10003486000069BB000066BC48DB072974BC2319.svg: Material properties ----------------------- :math:`E=2.1E5\mathrm{Mpa}`. :math:`\nu =0.3` The transverse shear coefficient for the plate is :math:`{A}_{\mathrm{CIS}}=5/6`. Boundary conditions and loads ------------------------------------- .. csv-table:: "Boundary conditions:", ":math:`\mathrm{P2P3}`:", "", "", ":math:`\mathrm{DZ}=0.` ", "" "", ":math:`\mathrm{P3P4}`:", "", ":math:`\mathrm{DZ}=0.` ", "", "" "Symmetry", ":math:`\mathrm{P1P2}`:", ":math:`\mathrm{DY}=0.` "," ", "", ":math:`\mathrm{DRX}=\mathrm{0 }\mathrm{.}` "," :math:`\mathrm{DRZ}=0.`" "", ":math:`\mathrm{P4P1}`:", ":math:`\mathrm{DX}=0.` ", "", ":math:`\mathrm{DRY}=\mathrm{0 }\mathrm{.}` "," :math:`\mathrm{DRZ}=0.`" Charging: Linear compression force :math:`q` on :math:`\mathrm{P2P3}` notes --------- It is not possible to solve the problem of compression deformation without introducing symmetry conditions. In fact, imposing symmetry boundary conditions for a quarter of a plate is the same as eliminating rigid body modes for the complete plate.