Reference problem ===================== Geometry --------- We consider a hemisphere divided into 4 pieces (by symmetry around the equatorial planes). .. image:: images/100002010000032D0000022BAD420090D7F3AB79.png :width: 2.7098in :height: 1.85in .. _RefImage_100002010000032D0000022BAD420090D7F3AB79.png: Radius of the sphere: :math:`R=10m` Thickness of the sphere: :math:`t=\mathrm{0,04}m` The hole is open: 18° Material properties ----------------------- The sphere is made of aluminum. The material is linear isotropic elastic. :math:`E\mathrm{=}6.825{10}^{7}\mathit{Pa}`, :math:`\nu \mathrm{=}0.3` Boundary conditions and loads ------------------------------------- On a quarter of the hemisphere, symmetry conditions are applied on all three planes (which are therefore QUAD4): * Plan :math:`(12)`: :math:`\mathit{DZ}=0`; * Plan :math:`(13)`: :math:`\mathit{DY}=0`; * Plan :math:`(23)`: :math:`\mathit{DX}=0`. Moreover, a loading in the form of a point force is applied to points A and B such as: * Point A: :math:`\mathit{FX}=\mathrm{0,5}N`; * Point B: :math:`\mathit{FY}=-\mathrm{0,5}N`.