Reference problem ===================== Geometry --------- .. image:: images/10000201000003AE0000054EEC0940F4241A08AB.png :width: 2.0646in :height: 2.9772in .. _RefImage_10000201000003AE0000054EEC0940F4241A08AB.png: **Figure** 1.1-a **: geometry of the cracked plate** Geometric dimensions of the cracked plate: .. csv-table:: "width", ":math:`L=1000\mathrm{mm}`" "height", ":math:`H=2000\mathrm{mm}`" Initial crack length: :math:`{a}_{0}=300\mathrm{mm}`. The cracks are positioned in the middle of the height of the plate (:math:`H/2`). Material properties ---------------------- Young's module :math:`E=206000\mathrm{MPa}` Poisson's Ratio :math:`\nu =0.33` Boundary conditions and loads ------------------------------------- .. image:: images/1000020100000366000005D0C35114DB74F36B79.png :width: 2.189in :height: 3.7429in .. _RefImage_1000020100000366000005D0C35114DB74F36B79.png: **Figure** 1.3-a **: boundary conditions and loads** Boundary conditions: Point :math:`A`: :math:`\Delta X\mathrm{=}\Delta Y\mathrm{=}0` Points on the lower end of the plate: :math:`\Delta Y\mathrm{=}0` Loading: Pressure applied to the upper end of the plate: :math:`P\mathrm{=}1\mathit{MPa}` Three propagations are calculated by imposing a maximum crack advance equal to :math:`30\mathit{mm}`. As a result of the symmetry of the geometry, the boundary conditions and the loading, the advances of the two cracks are always equal to the maximum advance imposed.