Reference problem ===================== Geometry --------- .. image:: images/10000201000003B200000568F53E16703F22447C.png :width: 2.1575in :height: 3.1563in .. _RefImage_10000201000003B200000568F53E16703F22447C.png: **Figure** 1.1-a **: geometry of the cracked plate** Geometric dimensions of the cracked plate: .. csv-table:: "width", ":math:`L=1000\mathrm{mm}`" "height", ":math:`H=2000\mathrm{mm}`" Initial crack length: :math:`{\mathrm{2a}}_{0}=300\mathrm{mm}`. The crack is positioned in the middle of the height of the plate (:math:`H/2`). Material properties ---------------------- Young's module :math:`E=206000\mathrm{MPa}` Poisson's ratio :math:`\nu =0.33` Boundary conditions and loads ------------------------------------- .. image:: images/1000020100000356000005BE59586ECB652D94DC.png :width: 2.0425in :height: 3.5154in .. _RefImage_1000020100000356000005BE59586ECB652D94DC.png: **Figure** 1.3-a **: boundary conditions and loads** Boundary conditions: Point :math:`A`: :math:`\Delta X=\Delta Y=0` Lower end of plate points: :math:`\Delta Y=0` Loading: Pressure applied to the upper end of the plate: :math:`P=1\mathrm{MPa}` Three propagations are calculated by imposing a crack advance equal to :math:`30\mathrm{mm}` at each crack bottom. As a result of the symmetry of the geometry, the boundary conditions and the loading, the advances of the two bottoms of the crack are always equal to the imposed advance.