Reference problem ===================== Geometry --------- Consider a square with side :math:`1m` crossed by a horizontal crack: .. image:: images/1000000000000208000001B68A88A403A1F8B567.png :width: 3.9465in :height: 3.3244in .. _RefImage_1000000000000208000001B68A88A403A1F8B567.png: The crack is defined by the normal "level set" :math:`{l}_{n}(Y)=Y-0.5` and the tangent :math:`{l}_{t}(X)=-X+0.5`. Material properties ---------------------- The material is isotropic elastic whose properties are: * :math:`E=100000\mathrm{MPa}` * :math:`\nu =0.0` Boundary conditions and loads ------------------------------------- Dirichlet boundary conditions ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ *For the A* modeling, Dirichlet boundary conditions are imposed along the entire contour of the square corresponding to the asymptotic opening mode in I :ref:`[1] ` mode. We then have: :math:`{u}_{X}=\frac{1}{2\mu }\sqrt{\frac{r}{2\pi }}{K}_{I}\mathrm{cos}\frac{\theta }{2}(\kappa -\mathrm{cos}\theta )` and :math:`{u}_{Y}=\frac{1}{2\mu }\sqrt{\frac{r}{2\pi }}{K}_{I}\mathrm{sin}\frac{\theta }{2}(\kappa -\mathrm{cos}\theta )`, with: :math:`\mu =\frac{E}{2(1+\nu )}` and :math:`\kappa =3-4\nu` in plane constraints, :math:`r` and :math:`\theta` are the polar coordinates as defined in the following figure: .. image:: images/10000000000001B90000019B565D5099C07B41FD.png :width: 2.5083in :height: 2.3374in .. _RefImage_10000000000001B90000019B565D5099C07B41FD.png: With :math:`\nu =0.0` and :math:`{K}_{I}=1`, we finally impose: :math:`{u}_{X}=\frac{1}{E}\sqrt{\frac{r}{2\pi }}\mathrm{cos}\frac{\theta }{2}(3-\mathrm{cos}\theta )` and :math:`{u}_{Y}=\frac{1}{E}\sqrt{\frac{r}{2\pi }}{K}_{I}\mathrm{sin}\frac{\theta }{2}(3-\mathrm{cos}\theta )`. Neumann boundary conditions ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ *For modelling* *B*, Neumann boundary conditions are imposed. A uniform compression :math:`P=-20\mathit{MPa}` is imposed on the right edge while the left edge is embedded. .. image:: images/10000000000001F0000001AC6D1621B47E7B64E9.png :width: 2.7492in :height: 2.372in .. _RefImage_10000000000001F0000001AC6D1621B47E7B64E9.png: