Reference problem ===================== Geometry --------- .. image:: images/100002000000061500000800E410EB20C594714E.png :width: 2.4272in :height: 2.7626in .. _RefImage_100002000000061500000800E410EB20C594714E.png: We assign any value to the inclination, :math:`\beta \mathrm{=}37\mathit{degrés}`. We choose :math:`a=1.E-3m`. Material properties ---------------------- The material is isotropic linear elastic, with a Young's modulus :math:`E=2.E11\mathrm{Pa}` and a Poisson's ratio :math:`\nu =0.3`. The traction curve is defined as: * the slope is equal to 3. * the elastic limit is equal to :math:`1.88\mathrm{GPa}`. The hypothesis of plane constraints is applied. Boundary conditions and loads ------------------------------------- * Arbitrary mesh domain limits: :math:`-{x}_{\mathrm{max}}\le x\le {x}_{\mathrm{max}}` with :math:`{x}_{\mathrm{max}}=\mathrm{10a}` :math:`-{y}_{\mathrm{max}}\le y\le {y}_{\mathrm{max}}` with :math:`{y}_{\mathrm{max}}=\mathrm{20a}` * Boundary conditions: In order to exclusively block the 3 rigid plane modes. :math:`\mathrm{UX}=\mathrm{UY}=0` at the bottom left corner of the full model. :math:`\mathrm{UY}=0` at the bottom right corner of the full model. On the bottom edge, we impose :math:`\mathrm{UY}=0` * Charging: uniform tension :math:`{\sigma }_{\mathrm{yy}}={\sigma }_{0}` on the top edge: The value of :math:`{\sigma }_{0}` is :math:`\mathrm{100MPa}`, in plane constraints.