Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- Boundary element method, with quadratic elements [:ref:`bib1 `]. The calculation of :math:`{K}_{I}` and :math:`{K}_{\mathrm{II}}` is carried out by a contour integral (integral M [:ref:`bib2 `]) in which the stresses and displacements calculated in the part are involved, as well as the stresses and displacements deduced from asymptotic solutions defined analytically, in which :math:`{K}_{I}` and :math:`{K}_{\mathrm{II}}` are alternately zero. For comparison, the calculation of :math:`K` is also performed by the virtual extension method. Benchmark results ---------------------- The results of the reference solution are shown in the table below, for the various values of the angle and for the two ends of the crack, with .. image:: images/Object_1.svg :width: 172 :height: 49 .. _RefImage_Object_1.svg: . +---------+-------------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+ |Method | | |Left side | | |Right side | | +---------+-------------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+ | | |:math:`\theta =15°`|:math:`\theta =30°`|:math:`\theta =45°`|:math:`\theta =60°`|:math:`\theta =15°`|:math:`\theta =30°`|:math:`\theta =45°`|:math:`\theta =60°`| +---------+-------------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+ |integral |:math:`{F}_{I}` |1.0115 |0.7868 |0.5211 |0.2770 |1,1266 |0.9910 |0.7646 |0.4919 | +---------+-------------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+ |:math:`M`|:math:`{F}_{\mathrm{II}}`|0.4434 |0.6244 |0.6723 |0.5804 |0.0862 |0.2961 |0.4056 |0.4057 | +---------+-------------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+ |extension|:math:`{F}_{I}` |1,0110 |0.7864 |0.5210 |0.2769 |1,1260 |0.9904 |0.7643 |0.4919 | +---------+-------------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+ |Virtual |:math:`{F}_{\mathrm{II}}`|0.4429 |0.6240 |0.6720 |0.5801 |0.0865 |0.2960 |0.4055 |0.4056 | +---------+-------------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+-------------------+ The relationship between the global energy return rate :math:`G` and :math:`{K}_{j}` is written as follows [:ref:`bib3 `]: :math:`G=\beta ({K}_{I}^{2}+{K}_{\mathrm{II}}^{2})` with: :math:`\beta \mathrm{=}\frac{1}{16C{h}^{2}(\alpha \pi )}(\frac{1+{\kappa }_{1}}{{\mu }_{1}}+\frac{1+{\kappa }_{2}}{{\mu }_{2}})` and :math:`\begin{array}{c}{\kappa }_{i}\mathrm{=}\frac{3\mathrm{-}{\nu }_{i}}{1+{\nu }_{i}}\\ {\mu }_{i}\mathrm{=}\frac{{E}_{i}}{2(1+{\nu }_{i})}\\ \alpha \mathrm{=}\frac{1}{2\pi }\mathrm{ln}\left[(\frac{{\kappa }_{1}}{{\mu }_{1}}+\frac{1}{{\mu }_{2}}){(\frac{{\kappa }_{2}}{{\mu }_{2}}+\frac{1}{{\mu }_{1}})}^{\mathrm{-}1}\right]\end{array}` Uncertainty about the solution --------------------------- Estimated at less than 0.1%. It should be noted that the difference between the contour integrals method and the virtual extension method is generally less than 0.05%. Bibliographical references --------------------------- 1. Stress intensity factor analysis of interface crack using boundary element method. Application of contour-integral method. N. MIYAZAKI, T. IKEDA, T. SODA, and T. MUNAKATA. Engng.Fract.Mechs., 45, no. 5, 599-610, 1993. 2. An analysis of interface cracks between dissimilar isotropic materials using conservation integrals in elasticity. J.F. YAU and T.C. CHANG. Engng.Fract.Mechs., 20, 423-432, 1984. 3. The strength of adhesive joints using the theory of cracks. B.M. MALYSHEV and R.L. SALGANIK. Int.J.Fract.Mech., 1, 114-128, 1965.