1. Reference problem#

1.1. Geometry#

A square plate, made of an orthotropic material inclined by 30 degrees with respect to the \(\mathrm{AB}\) edge.

_images/Shape1.gif

With \(b=1m\), any thickness (plane constraints), angle of orthotropy: \(\theta\) = 30 degrees.

1.2. Material properties#

The properties of the materials constituting the plate are:

orthotropic elastic:

\({E}_{L}=4.E10\mathrm{Pa}\)

\({E}_{T}=1.E10\mathrm{Pa}\)

\({G}_{LT}=0.45E10\mathrm{Pa}\)

\({G}_{\mathrm{TN}}=0.35E10\mathrm{Pa}\)

\({\mathit{NU}}_{LT}=0.3\)

Axis \(L\) is tilted by 30 degrees with respect to \(\mathrm{AB}\).

1.3. Boundary conditions and loads#

  • At point \(A\): \(\mathrm{DX}=0\), \(\mathrm{DY}=0\)

  • At point \(B\): \(\mathrm{DX}=0\),

  • Distributed line loading: \(\mathrm{Fx}={10}^{4}\mathrm{Pa}\) on \(\mathrm{BC}\)

  • Distributed line loading: \(\mathrm{Fx}=-{10}^{4}\mathrm{Pa}\) on \(\mathrm{DA}\)

1.4. Initial conditions#

Not applicable.