3. Modeling A#
3.1. Characteristics of modeling#
We use a DKT model.
3.2. Characteristics of the mesh#
The mesh contains 5000 elements of type TRIA3.
3.3. Tested sizes and results#
We test the displacement along the \(Z\) axis and the moment \(\mathit{MXX}\) at the center of the plate (point \(A\)).
Identification |
Reference type |
Reference value |
Tolerance % |
|
DEPL |
\(X(\mathit{cm})\) |
|||
\(\mathit{DZ}\) |
\(0.0\) |
“SOURCE_EXTERNE” |
\(0.14712\) |
\(0.1\) |
Identification |
Reference type |
Reference value |
Tolerance |
|
EFGE_ELNO |
\(X(\mathit{cm})\) |
|||
\(\mathit{MXX}\) |
\(1.0\) |
“SOURCE_EXTERNE” |
\(103.80\) |
\(3.5\) |
Stress is tested on the lower, middle and upper skin in 2 layers.
Layer 1: \(\mathrm{-}\mathrm{0.125cm}<Z<\mathrm{-}\mathrm{0.0417cm}\)
Dot/Mesh |
Diaper |
Size |
Reference type |
Reference value |
Tolerance |
\(A(\mathit{M5200})\) |
\(\mathit{INF}\) |
\(\mathit{SIXX}\) |
“NON_DEFINI” |
\(9666.036\) |
\({10}^{\mathrm{-}4}\text{\%}\) |
\(\mathit{SIYY}\) |
“NON_DEFINI” |
\(9664.713\) |
\({10}^{\mathrm{-}4}\text{\%}\) |
||
\(\mathit{SIXY}\) |
“NON_DEFINI” |
\(\mathrm{-}0.662\) |
\({10}^{\mathrm{-}6}\) |
||
\(\mathit{MOY}\) |
\(\mathit{SIXX}\) |
“NON_DEFINI” |
\(8285.175\) |
\({10}^{\mathrm{-}4}\text{\%}\) |
|
\(\mathit{SIYY}\) |
“NON_DEFINI” |
\(8284.039\) |
\({10}^{\mathrm{-}4}\text{\%}\) |
||
\(\mathit{SIXY}\) |
“NON_DEFINI” |
\(\mathrm{-}0.568\) |
\({10}^{\mathrm{-}6}\) |
||
\(\text{SUP}\) |
\(\mathit{SIXX}\) |
“NON_DEFINI” |
\(6904.313\) |
\({10}^{\mathrm{-}4}\text{\%}\) |
|
\(\mathit{SIYY}\) |
“NON_DEFINI” |
\(6903.366\) |
\({10}^{\mathrm{-}4}\text{\%}\) |
||
\(\mathit{SIXY}\) |
“NON_DEFINI” |
\(\mathrm{-}0.473\) |
\({10}^{\mathrm{-}6}\) |
Layer #3: \(\mathrm{0.0417cm}<Z<\mathrm{0.125cm}\)
Dot/Mesh |
Diaper |
Size |
Reference type |
Reference value |
Tolerance |
\(A(\mathit{M5200})\) |
\(\mathit{INF}\) |
\(\mathit{SIXX}\) |
“NON_DEFINI” |
\(4142.588\) |
\({10}^{\mathrm{-}4}\text{\%}\) |
\(\mathit{SIYY}\) |
“NON_DEFINI” |
\(4142.020\) |
\({10}^{\mathrm{-}4}\text{\%}\) |
||
\(\mathit{SIXY}\) |
“NON_DEFINI” |
\(\mathrm{-}0.284\) |
\({10}^{\mathrm{-}6}\) |
||
\(\mathit{MOY}\) |
\(\mathit{SIXX}\) |
“NON_DEFINI” |
\(2761.725\) |
\({10}^{\mathrm{-}4}\text{\%}\) |
|
\(\mathit{SIYY}\) |
“NON_DEFINI” |
\(2761.346\) |
\({10}^{\mathrm{-}4}\text{\%}\) |
||
\(\mathit{SIXY}\) |
“NON_DEFINI” |
\(\mathrm{-}0.189\) |
\({10}^{\mathrm{-}6}\) |
||
\(\text{SUP}\) |
\(\mathit{SIXX}\) |
“NON_DEFINI” |
\(1380.863\) |
\({10}^{\mathrm{-}4}\text{\%}\) |
|
\(\mathit{SIYY}\) |
“NON_DEFINI” |
\(1380.673\) |
\({10}^{\mathrm{-}4}\text{\%}\) |
||
\(\mathit{SIXY}\) |
“NON_DEFINI” |
\(\mathrm{-}0.095\) |
\({10}^{\mathrm{-}6}\) |