Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- BROWN & STRAWLEY [:ref:`bib1 `] reference solution: .. csv-table:: ":math:`J\mathrm{=}{F}^{2}\pi a{\sigma }^{2}\mathrm{/}E` with :math:`F=1.98`" ":math:`a` in :math:`\mathit{mm}`" ":math:`\sigma` and :math:`E` in :math:`N/{\mathrm{mm}}^{2}`" Reference results for :math:`G` ------------------------------------- Benchmark results :math:`G={1.98}^{2}\times \pi \times 37.5\times 0.5{10}^{-5}=2.3093{10}^{-3}\mathrm{Mpa.mm}` The formula .. image:: images/Object_3.svg :width: 17 :height: 18 .. _RefImage_Object_3.svg: (IRWIN) = :math:`\frac{1}{E}({K}_{1}^{2}+{K}_{2}^{2})` conduit, like .. image:: images/Object_5.svg :width: 17 :height: 18 .. _RefImage_Object_5.svg: , at :math:`{K}_{1}=21.491{\mathrm{MPa.mm}}^{1/2}` Reference results for derivatives of :math:`G` ----------------------------------------------------- By varying the Young's modulus and the load :math:`\mathrm{Fy}`, we see that: :math:`G\mathrm{=}\alpha {F}_{Y}^{2}` with :math:`\alpha \mathrm{=}2.3{10}^{\mathrm{-}3}` being :math:`\frac{\mathrm{\partial }G}{\mathrm{\partial }{F}_{Y}}\mathrm{=}2\alpha {F}_{Y}` --------------------------------------- ---- ---- :math:`G\mathrm{=}\frac{\beta }{E}` with :math:`\beta \mathrm{=}460.` being :math:`\frac{\mathrm{\partial }G}{\mathrm{\partial }E}\mathrm{=}\mathrm{-}\frac{G}{E}` Bibliographical reference ------------------------- 1. BROWN - STAWLEY ASTM Special Technical Publication No. 410 (1966)