4. B modeling#

4.1. Characteristics of modeling#

_images/100022A000001AC500002113AD5987BF3E31F67D.svg

The initial mesh \(\mathrm{ma}\) (substructuring level \(-2\)) only contains the 12 QUAD4 of \(\mathrm{IJBA}\) and \(\mathrm{ABCD}\).

The macr_elem_stat \(({S}_{1})\) is set based on the elements in \(\mathrm{ABCD}\). This macr_elem_stat is condensed on the nodes of \(\mathrm{AB}\) and \(\mathrm{CD}\) (level \(-2\)).

_images/10000FF800001C5200000F66D494C22286F394ED.svg

The \(-1\) level \(\text{ma\_123}\) mesh is defined by rotating \(\text{S\_1}\) twice to represent crown \(\mathrm{ABCEGHFDA}\).

_images/100015120000283400000E78470D1303C995C21E.svg

The macr_elem_stat \(\text{S\_123}\) is defined using substructures \(\mathrm{ABCD}\), \(\mathrm{DCEF}\), and \(\mathrm{FEGH}\). This macr_elem_stat is condensed on the nodes of \(\mathrm{AB}\) and \(\mathrm{GH}\).

The \(\mathrm{mag0}\) mesh is defined by the macr_elem_stat \(\text{S\_123}\).

The final mesh \(\mathrm{mag}\) (level \(0\)) is defined by the mesh \(\mathrm{mag0}\) that is assembled (ASSE_MAILLAGE) with the initial mesh \(\mathrm{ma}\) to recover the meshes of \(\mathrm{IJBA}\).

The resolution is then done on this final mesh, then the displacements within the macr_elem_stat are calculated using the operator DEPL_INTERNE.

_images/100010BE0000284F000014778EE6D943539B1567.svg

4.2. Characteristics of the mesh#

Number of knots: 20

Number of meshes and types: 12 QUAD4

4.3. Tested sizes and results#

Identification

Reference

\(\mathrm{P1}\) \(u\)

1.88327

\(\mathrm{P1}\) \(v\)

2.59224 10—2

\(\mathrm{P2}\) \(u\)

—8.27372 10—2

\(\mathrm{P2}\) \(v\)

8.27372 10—2

\(\mathrm{P3}\) \(u\)

2.70375 10—1

\(\mathrm{P3}\) \(v\)

5.69552 10—1

\(\mathrm{P4}\) \(u\)

5.17703 10—1

\(\mathrm{P4}\) \(v\)

5.43387 10—1

\(\mathrm{P1}\) \(u\)

1.71883

\(\mathrm{P1}\) \(v\)

—6.04367

\(\mathrm{P2}\) \(u\)

—4.60196 10—2

\(\mathrm{P2}\) \(v\)

4.60196 10—2

\(\mathrm{P3}\) \(u\)

2.26903 10—1

\(\mathrm{P3}\) \(v\)

—6.14296 10—1

\(\mathrm{P4}\) \(u\)

—9.57110 10—1

\(\mathrm{P4}\) \(v\)

—2.53878