2. Benchmark solution#

2.1. Calculation method#

The reference result was obtained analytically with the following hypotheses:

  • The plate is assumed to be of infinite dimension,

  • Muskheliskvili and Kolosov method in polar coordinates.

\({\mathrm{\sigma }}_{\mathit{rr}}=\frac{P}{2}[(1-\frac{{a}^{2}}{{r}^{2}})-(1-\frac{4{a}^{2}}{{r}^{2}}+\frac{3{a}^{4}}{{r}^{4}})\mathrm{cos}2\mathrm{\theta }]\)

\({\mathrm{\sigma }}_{\mathrm{\theta }\mathrm{\theta }}=\frac{P}{2}[(1+\frac{{a}^{2}}{{r}^{2}})+(1+\frac{3{a}^{4}}{{r}^{4}})\mathrm{cos}2\mathrm{\theta }]\)

\({\mathrm{\sigma }}_{r\mathrm{\theta }}=\frac{P}{2}(1+\frac{2{a}^{2}}{{r}^{2}}-\frac{3{a}^{4}}{{r}^{4}})\mathrm{sin}2\mathrm{\theta }\)

2.2. Reference quantities and results#

The selected reference results relate to circumferential stress \({\mathrm{\sigma }}_{\mathrm{\theta }\mathrm{\theta }}\).

\({\mathrm{\sigma }}_{\mathrm{\theta }\mathrm{\theta }}(a,\mathrm{\theta })=P(1+2\mathrm{cos}2\mathrm{\theta })\)

Point

Size

Value (N/mm²)

\(\text{A}(a\mathrm{,0})\)

\({\mathrm{\sigma }}_{\text{}\mathrm{\theta }\mathrm{\theta }}\)

\(7.5\)

\(\text{F}(a,\frac{\mathrm{\pi }}{4})\)

\({\mathrm{\sigma }}_{\text{}\mathrm{\theta }\mathrm{\theta }}\)

\(2.5\)

\(\text{E}(a,\frac{\mathrm{\pi }}{2})\)

\({\mathrm{\sigma }}_{\text{}\mathrm{\theta }\mathrm{\theta }}\)

\(-2.5\)

2.3. Uncertainties about the solution#

Semi-analytical solution

2.4. Bibliographical references#

  1. Guide VPCS - 1990 edition.