1. Reference problem#
1.1. Geometry#

Coordinates of the points (\(m\)):
\(A:(0.,6.\cdot {10}^{-3})\)
\(B:(48.\cdot {10}^{-\mathrm{3,}}6.\cdot {10}^{-3})\)
\(C:(48.\cdot {10}^{-\mathrm{3,}}-6.\cdot {10}^{-3})\)
\(D:(0.,-6.\cdot {10}^{-3})\)
Plate geometry (\(m\)):
Thickness: \(h=\mathrm{0,001}\)
Width: \(L=0.048\)
Height: \(H=0.012\)
Mesh group: \(\text{BORD\_CH}\) right surface (\(\mathrm{BC}\))
Mesh group: \(\mathrm{ENCAST}\) left surface (\(\mathrm{AD}\))
Mesh group: \(\mathrm{SURF}\) inner surface
1.2. Material properties#
\(E=3.\cdot {10}^{10}\mathrm{Pa}\)
\(\nu =0.25\)
1.3. Boundary conditions and loads#
Imposed travel:
\(\mathrm{ENCAST}\): \(\mathrm{DX}=\mathrm{DY}=0.\)
Charging:
Parabolic distribution over height, constant over thickness.
\(Y(m)\) |
-0.006 |
-0.003 |
-0.003 |
0 |
0.003 |
0.006 |
2D Shear Stress (\(\mathrm{Pa.m}\)) |
0 |
3.75E6 |
3.75E6 |
3.75E6 |
0 |
|
The integration of this constraint on the height \(H\) leads to a constraint resulting from \(80.{10}^{3}\mathrm{Pa.m}\) which is noted \(P\) in the following. |