Reference problem ===================== Geometry --------- .. image:: images/10000000000001D000000178AF9AEF317C64DD08.png :width: 2.9681in :height: 2.3701in .. _RefImage_10000000000001D000000178AF9AEF317C64DD08.png: .. csv-table:: "Radius of curvature", ":math:`R\mathrm{=}0.3m`" "Profile height", ":math:`h\mathrm{=}0.015m`" "Profile width", ":math:`b\mathrm{=}0.002m`" "Section", ":math:`S\mathrm{=}\mathit{bh}`" "1st flexural inertia", ":math:`{I}_{X}\mathrm{=}{\mathit{bh}}^{3}\mathrm{/}12`" "2nd flexural inertia", ":math:`{I}_{Y}\mathrm{=}{\mathit{hb}}^{3}\mathrm{/}12`" "Torsional inertia", ":math:`J\mathrm{=}{\mathit{hb}}^{3}\mathrm{/}3`" Material properties ------------------------ .. csv-table:: "Young's module", ":math:`E\mathrm{=}7.E10N\mathrm{/}{m}^{2}`" "Poisson's Ratio", ":math:`\nu \mathrm{=}0.3`" "Sliding module", ":math:`G\mathrm{=}E\mathrm{/}2(1+\nu )`" Boundary conditions and loading ------------------------------------ The beam is double-supported. The section is prevented from twisting at the :math:`A` and :math:`B` ends. To respect the hypotheses of the theoretical model taken as a reference, it is important that the moment is constant and that the normal force is zero along the beam. This is why we leave the :math:`u` movement free according to :math:`X` at point :math:`B`. The boundary conditions are: • At point :math:`A`: :math:`u\mathrm{=}v\mathrm{=}w\mathrm{=}0`; :math:`{\Phi }_{Y}\mathrm{=}0` • At point :math:`B`: :math:`v\mathrm{=}w\mathrm{=}0`; :math:`{\Phi }_{X}\mathrm{=}0` The initial state of stress that allows the stability analysis to be carried out is obtained by imposing a moment of bending around the :math:`Z` axis, at points :math:`A` and :math:`B`: :math:`M\mathrm{=}1\mathit{Nm}` Initial conditions -------------------- Not applicable in static stability analysis.