1. Reference problem#
1.1. Geometry#
Beam in three-point bending, defined by:
With a duplicate section \(T\):
In this diagram, \(O\) is located halfway up the section.
The total cross section of the upper steels is \({3.10}^{\mathrm{-}4}{m}^{2}\) and that of the lower steels is \({4.10}^{\mathrm{-}4}{m}^{2}\).
1.2. Material properties#
concrete: \(E\mathrm{=}2.{10}^{10}\mathit{Pa}\); \(\nu \mathrm{=}0.2\); \(\rho \mathrm{=}2400{\mathit{kg.m}}^{\mathrm{-}3}\); \(\alpha \mathrm{=}10\mathrm{-}5{K}^{\mathrm{-}1}\)
steel: \(E\mathrm{=}\mathrm{2,1}\mathrm{.}{10}^{11}\mathit{Pa}\); \(\nu \mathrm{=}0.33\); \(\rho \mathrm{=}7800{\mathit{kg.m}}^{\mathrm{-}3}\); \(\alpha \mathrm{=}10\mathrm{-}5{K}^{\mathrm{-}1}\)
1.3. Boundary conditions#
Simple press in \(B\): \(\mathit{dy}\mathrm{=}0\)
Press « double » in \(A\): \(\mathit{dx}\mathrm{=}\mathit{dy}\mathrm{=}\mathit{dz}\mathrm{=}0\) as well as \(\mathit{rx}\mathrm{=}\mathit{ry}\mathrm{=}0\).
1.4. Loads#
Three load cases are tested in succession:
Load 1: concentrated effort in the middle of the beam, \(F\mathrm{=}10000N\)
Loading 2: self-weight of the beam, \(g\mathrm{=}\mathrm{9,8}{\mathit{m.s}}^{\mathrm{-}2}\)
Load 3: homogeneous heating of the \(\Delta T\mathrm{=}100K\) beam