H modeling ============== Characteristics of modeling ----------------------------------- The model is composed of 21 TUYAU_3M elements based on SEG4 meshes. The section is hollow circular with radius :math:`\mathrm{0,1}` and thickness :math:`\mathrm{0,01}`. The distributed effort is imposed according to axis :math:`y`. So the flexure takes place around :math:`z`. Characteristics of the mesh ---------------------------- It consists of 21 SEG3 stitches, transformed into SEG4 meshes. The length of the pipe is :math:`L=6m`. Tested sizes and results ------------------------------ Travel ~~~~~~~~~~~~ .. csv-table:: "", "**Analytical Results**" ":math:`{D}_{y}\mathit{maxi}` at point :math:`x=3.115977734`", "9.38888E-03" Cross-sectional reactions ~~~~~~~~~~~~~~~~~~~~~~~~~~ .. csv-table:: "", "**Analytical Results**" ":math:`{R}_{\mathit{Oy}}` ", "-6.0000E+03" ":math:`{R}_{\mathit{By}}` ", "-1.2000E+04" Internal efforts ~~~~~~~~~~~~~~~~~~~~ .. csv-table:: "", "**Analytical Results**" ":math:`{V}_{y}(x=0)` ", "6.0000E+03" ":math:`{V}_{y}(x=L=6)` ", "-1.2000E+04" ":math:`\mathrm{MFZ}` in :math:`x=2\sqrt{3}` ", "-1.3856E+04" Constraints ~~~~~~~~~~~~ They are calculated at the abscissa point :math:`x=\frac{L\sqrt{3}}{3}` which corresponds to the maximum moment: :math:`{M}_{z}(x)=\frac{-1000}{9\sqrt{(3)}}{L}^{3}=-13856.41\mathrm{N.m}` For the angle 0° on the circumference of the pipe (the origin of the angles being the :math:`z` axis), the constraints are zero, and for the 90° angle, they are maximum: :math:`{\sigma }_{\mathrm{xx}}^{\mathrm{max}}=\frac{{M}_{z}^{\mathrm{max}}(R-e/2)}{{I}_{z}}=-4.87363E+07\mathrm{Pa}` .. csv-table:: "", "**Reference**", "Tolerance" ":math:`{\sigma }_{\mathrm{xx}}(\alpha =0)` ", "0"," 0.10%" ":math:`{\sigma }_{\mathrm{xx}}(\alpha =90)` ", "-4.87363E+07"," 1.00%" ":math:`\mathrm{MFZ}` ", "-1.3856E+04", "1. %"