3. B modeling#

3.1. Characteristics of modeling#

The beam arch was modelled in a polygonal line of \(2\times 20\) SEG2.

Boundary conditions:

DDL_IMPO = _F (GROUP_NO =”Beam”, DX= 0.0, DRY = 0.0, DRZ = 0.)

_F (NOEUD =( “A”, “G), DX= 0.0, DY= 0.0, DZ= 0.)

except for load case 2

(NOEUD =”A”, DX= 0.0, DY= 1.0, DY= 1.0, DZ= 1.0)

(NOEUD =”G”, DX= 0.0, DY=-1.0, DY=-1.0, DZ= 1.0)

load case 1

FORCE_NODALE = _F (NOEUD =( “C”, “D”), Fz = -1000.0)

load case 3: Charging at temperature via command AFFE_MATERIAU

AFFE_VARC =_F (NOM_VARC =” TEMP “, VALE_REF =0., EVOL = TEMP,

TOUT =” OUI “, NOM_CHAM =” TEMP”,),)

Charging case 4

PESANTEUR =_F (GRAVITE =9.81,

DIRECTION =( 0.,0., -1.))

Node name: \(A,B,C,D,E,F\)

3.2. Characteristics of the mesh#

Number of knots: 45

Number of meshes and types: 44 SEG2

3.3. Tested sizes and results#

Case

Point

movement ( \(m\) )

Reference

Reference

Aster

%diff

tolerance

\(B\)

\({v}_{B}\)

—8.120E-3

—8.1209E-3

0.01

1.E-3

1

\({w}_{B}\)

—1.000E-2

—1.000E-2

0.00

Forces

\(C\)

\({v}_{C}\)

7.389E-3

7.3863E-3

—0.04

nodal

\(D\)

\({w}_{D}\)

—2.553E-2

—2.5528E-2

—0.01

\(B\)

\({v}_{B}\)

9.858E-1

9.858E-1

9.8585E-1

—0.00

1.E-3

2

\({w}_{B}\)

1.000

1.000

1.0000

—0.00

Displacement

\(C\)

\({v}_{C}\)

1.738E-1

1.7374E-1

—0.04

imposed

\(D\)

\({w}_{D}\)

1.812

1.8121

\(B\)

\({v}_{B}\)

—5.660E-6

—5.6612E-6

0.02

1.E-3

3

\({w}_{B}\)

Expansion

\(C\)

\({v}_{C}\)

—1.305E-4

—1.3051E-4

0.01

\(D\)

\({w}_{D}\)

5.248E-4

5.2484E-4

0.01

\(B\)

\({v}_{B}\)

—3.111E-3

—3.1145E-3

0.11

5.E-3

4

\({w}_{B}\)

—4.552E-3

—4.5521E-3

0.00

Gravity

\(C\)

\({v}_{C}\)

1.180E-3

1.1409E-3

—3.31

5.E-2

\(D\)

\({w}_{D}\)

—8.850E-3

—8.850E-3

—0.40

5.E-3

3.4. notes#

The modeling of the elbow by straight elements requires a very fine mesh, for sufficient precision (especially for distributed loading).