3. B modeling#
3.1. Characteristics of modeling#
The beam arch was modelled in a polygonal line of \(2\times 20\) SEG2.
Boundary conditions:
DDL_IMPO = _F (GROUP_NO =”Beam”, DX= 0.0, DRY = 0.0, DRZ = 0.)
_F (NOEUD =( “A”, “G), DX= 0.0, DY= 0.0, DZ= 0.)
except for load case 2
(NOEUD =”A”, DX= 0.0, DY= 1.0, DY= 1.0, DZ= 1.0)
(NOEUD =”G”, DX= 0.0, DY=-1.0, DY=-1.0, DZ= 1.0)
load case 1
FORCE_NODALE = _F (NOEUD =( “C”, “D”), Fz = -1000.0)
load case 3: Charging at temperature via command AFFE_MATERIAU
AFFE_VARC =_F (NOM_VARC =” TEMP “, VALE_REF =0., EVOL = TEMP,
TOUT =” OUI “, NOM_CHAM =” TEMP”,),)
Charging case 4
PESANTEUR =_F (GRAVITE =9.81,
DIRECTION =( 0.,0., -1.))
Node name: \(A,B,C,D,E,F\)
3.2. Characteristics of the mesh#
Number of knots: 45
Number of meshes and types: 44 SEG2
3.3. Tested sizes and results#
Case |
Point |
movement ( \(m\) ) |
Reference |
Reference |
Aster |
%diff |
tolerance |
\(B\) |
|
—8.120E-3 |
—8.1209E-3 |
0.01 |
1.E-3 |
||
1 |
\({w}_{B}\) |
—1.000E-2 |
—1.000E-2 |
0.00 |
|||
Forces |
\(C\) |
|
7.389E-3 |
7.3863E-3 |
—0.04 |
||
nodal |
\(D\) |
|
—2.553E-2 |
—2.5528E-2 |
—0.01 |
||
\(B\) |
|
9.858E-1 |
9.858E-1 |
9.8585E-1 |
—0.00 |
1.E-3 |
|
2 |
\({w}_{B}\) |
1.000 |
1.000 |
1.0000 |
—0.00 |
||
Displacement |
\(C\) |
|
1.738E-1 |
1.7374E-1 |
—0.04 |
||
imposed |
\(D\) |
|
1.812 |
1.8121 |
|||
\(B\) |
|
—5.660E-6 |
—5.6612E-6 |
0.02 |
1.E-3 |
||
3 |
\({w}_{B}\) |
||||||
Expansion |
\(C\) |
|
—1.305E-4 |
—1.3051E-4 |
0.01 |
||
\(D\) |
|
5.248E-4 |
5.2484E-4 |
0.01 |
|||
\(B\) |
|
—3.111E-3 |
—3.1145E-3 |
0.11 |
5.E-3 |
||
4 |
\({w}_{B}\) |
—4.552E-3 |
—4.5521E-3 |
0.00 |
|||
Gravity |
\(C\) |
|
1.180E-3 |
1.1409E-3 |
—3.31 |
5.E-2 |
|
\(D\) |
|
—8.850E-3 |
—8.850E-3 |
—0.40 |
5.E-3 |
3.4. notes#
The modeling of the elbow by straight elements requires a very fine mesh, for sufficient precision (especially for distributed loading).