2. Benchmark solution#
2.1. Calculation method used for the reference solution#
A detailed analytical solution is available in reference [bib2].
Let’s use the following notations:
\(E\) |
: |
Young’s modulus |
\(L\) |
: |
bar length |
\(A\) |
: |
bar section |
\(N\) |
: |
normal force directed along the \(X\) axis |
\(\alpha ,\beta\) |
: |
Rayleigh damping coefficients |
\(\Omega\) |
: |
excitation frequency |
And let’s put
\(r\mathrm{=}\sqrt{\frac{1+{\beta }^{2}\mathrm{/}{\Omega }^{2}}{1+{\alpha }^{2}\mathrm{/}{\Omega }^{2}}}\)
\(k\mathrm{=}p+\mathit{iq}\mathrm{=}\Omega \sqrt{\frac{p}{2E}}\left[\sqrt{r\mathrm{-}\frac{1\mathrm{-}\alpha \beta }{1+{\alpha }^{2}{\Omega }^{2}}}+i\sqrt{r+\frac{1\mathrm{-}\alpha \beta }{1+{\alpha }^{2}{\Omega }^{2}}}\right]\)
The displacement to any point \(M(x)\) is given by:
\(V(x)\mathrm{=}\frac{N}{\mathit{EA}}\frac{A}{(p+\mathit{iq})(1+i\Omega \alpha )}\frac{\mathit{sh}\mathit{px}\mathrm{cos}\mathit{qx}+i\mathit{ch}\mathit{px}\mathrm{sin}\mathit{qx}}{\mathit{ch}L\mathrm{cos}\mathit{qL}+i\mathit{sh}\mathit{pL}\mathrm{sin}\mathit{qL}}\)
Movement \((m)\) |
Speed \((m/s)\) |
Acceleration \((m/{s}^{2})\) |
|
Real game |
—7.00 10—11 |
—3.18 10—6 |
2.76 10—5 |
Imaginary part |
5.07 10—9 |
—4.40 10—8 |
—2.00 10—3 |
2.2. Benchmark results#
Fields of movement, speed, and acceleration of the free end of the bar.
2.3. Uncertainty about the solution#
Digital solution.
2.4. Bibliographical references#
KERBER « Harmonic substructuring in Code_Aster », Report EDF, HP‑61/93‑104.
ROBERT, Analytical solutions in structural dynamics, Samtech Report No. 121, March 1996.
RICHARD, Substructuring methods in Code_Aster, Internal Report EDF - DER, HP-61/92-149.