2. Benchmark solution#

2.1. Calculation method used for the reference solution#

A detailed analytical solution is available in reference [bib2].

Let’s use the following notations:

\(E\)

:

Young’s modulus

\(L\)

:

bar length

\(A\)

:

bar section

\(N\)

:

normal force directed along the \(X\) axis

\(\alpha ,\beta\)

:

Rayleigh damping coefficients

\(\Omega\)

:

excitation frequency

And let’s put

\(r\mathrm{=}\sqrt{\frac{1+{\beta }^{2}\mathrm{/}{\Omega }^{2}}{1+{\alpha }^{2}\mathrm{/}{\Omega }^{2}}}\)

\(k\mathrm{=}p+\mathit{iq}\mathrm{=}\Omega \sqrt{\frac{p}{2E}}\left[\sqrt{r\mathrm{-}\frac{1\mathrm{-}\alpha \beta }{1+{\alpha }^{2}{\Omega }^{2}}}+i\sqrt{r+\frac{1\mathrm{-}\alpha \beta }{1+{\alpha }^{2}{\Omega }^{2}}}\right]\)

The displacement to any point \(M(x)\) is given by:

\(V(x)\mathrm{=}\frac{N}{\mathit{EA}}\frac{A}{(p+\mathit{iq})(1+i\Omega \alpha )}\frac{\mathit{sh}\mathit{px}\mathrm{cos}\mathit{qx}+i\mathit{ch}\mathit{px}\mathrm{sin}\mathit{qx}}{\mathit{ch}L\mathrm{cos}\mathit{qL}+i\mathit{sh}\mathit{pL}\mathrm{sin}\mathit{qL}}\)

Movement \((m)\)

Speed \((m/s)\)

Acceleration \((m/{s}^{2})\)

Real game

—7.00 10—11

—3.18 10—6

2.76 10—5

Imaginary part

5.07 10—9

—4.40 10—8

—2.00 10—3

2.2. Benchmark results#

Fields of movement, speed, and acceleration of the free end of the bar.

2.3. Uncertainty about the solution#

Digital solution.

2.4. Bibliographical references#

    1. KERBER « Harmonic substructuring in Code_Aster », Report EDF, HP‑61/93‑104.

    1. ROBERT, Analytical solutions in structural dynamics, Samtech Report No. 121, March 1996.

    1. RICHARD, Substructuring methods in Code_Aster, Internal Report EDF - DER, HP-61/92-149.