Reference problem ===================== Geometry --------- .. image:: images/Object_1.png :width: 5.5in :height: 3.85in .. _RefSchema_Object_1.png: .. csv-table:: "Outside diameter", ":", ":math:`48.E-3m`" "Thickness", ":", ":math:`5.E-3m`" "Elbow radius", ":", ":math:`0.170m`" Material properties ------------------------ .. csv-table:: "Density", ":", ":math:`7960.{\mathrm{kg.m}}^{-3}`" "Young's module", ":", ":math:`1.9E+11{\mathrm{N.m}}^{-2}`" "Poisson's ratio", ":", ":math:`0.3`" "Mass concentrated at node 4", ":", ":math:`10.\mathrm{kg}`" Boundary conditions and loads ------------------------------------- Boundary conditions ~~~~~~~~~~~~~~~~~~~~~~~~ At node 1: :math:`\mathrm{dx}=\mathrm{dy}=\mathrm{dz}=0` (ball joint) At node 7: :math:`\mathrm{dx}=\mathrm{dy}=\mathrm{dz}=\mathrm{drx}=\mathrm{dry}=\mathrm{drz}=0` (embedding) At node 2, support in direction :math:`z` At node 3, support in direction :math:`y` At node 5, support in direction :math:`y` At node 6, support in the :math:`x` direction The stiffness provided by each of the supports are: :math:`{K}_{x}={K}_{y}={K}_{z}=80.E+3{\mathrm{N.m}}^{-1}` :math:`{K}_{\theta x}={K}_{\theta y}={K}_{\theta z}=J=1.2{\mathrm{N.m.deg}}^{-1}` Loads ~~~~~~~~~~~ **Calculating static modes** A first calculation makes it possible to validate the calculation of the static modes. The entire model is subject to a uniform acceleration according to :math:`x` with a value of :math:`100\mathrm{\times }g` with :math:`g=9.81{\mathrm{m.s}}^{-2}` **Spectral response** The pipe line is subjected to an excitation following :math:`x`, defined by a response spectrum such as: • its value in displacement for frequencies between 1 and 10. :math:`\mathrm{Hz}`, or :math:`d=48.E-\mathrm{3m}` • its speed value for frequencies between 10. and 63. :math:`\mathrm{Hz}`, or :math:`v={\mathrm{3.m.s}}^{-1}` • its acceleration value for frequencies between 63. and 1000. :math:`\mathrm{Hz}`, or :math:`\gamma =120\ast g` Below is shown the acceleration spectrum, determined from the excitation for reduced damping :math:`\xi \mathrm{=}0`. .. image:: images/100002000000027E000001C2B82D53D1ED537DBB.png :width: 3.6362in :height: 2.5646in .. _RefImage_100002000000027E000001C2B82D53D1ED537DBB.png: The characteristic values used are: :math:`\gamma (1\mathrm{Hz})=\mathrm{1.92m}/{s}^{2}` :math:`\gamma (10\mathrm{Hz})=192m/{s}^{2}` :math:`\gamma (63\mathit{Hz})\mathrm{=}1000m\mathrm{/}{s}^{2}` :math:`\gamma (1000\mathrm{Hz})=1000m/{s}^{2}` Elbow flexibility ~~~~~~~~~~~~~~~~~~~~~~~~~ The flexibility coefficient, :math:`{C}_{\mathrm{flex}}`, of the elbows is given by the RCC -M regulation: :math:`{C}_{\mathrm{flex}}=\frac{1.65}{h}` with :math:`h=\frac{\mathrm{ep}\ast {r}_{\mathrm{courb}}}{{r}_{m}^{2}}` .. csv-table:: ":math:`\mathrm{ep}` ", ":", "elbow thickness" ":math:`{r}_{\mathrm{courb}}` ", ":", "elbow radius of curvature" ":math:`{r}_{m}` ", ":", "mean elbow radius" The stress intensification index, :math:`{I}_{\mathrm{sigm}}`, is given by: :math:`{I}_{\mathrm{sigm}}=\frac{0.9}{{h}^{0.666}}` According to regulation RCC -M, the flexibility coefficient and the stress intensification index are greater than or equal to one. This is not the case in this test case.