Reference problem ===================== Geometry --------- Software MISS3D uses the frequency coupling method to take into account soil-structure interaction. This method, based on dynamic substructuring, consists in dividing the field of study into three sub-areas: * the ground, * the foundation, * the building. **The floor** The ground corresponds to the 10-horizontal layer profile shown on [:ref:`Figure 1.1-a
`] below: ++----------------------------------------------------------------------------------------------------------------------------+ || | ++----------------------------------------------------------------------------------------------------------------------------+ || | ++ .. image:: images/10000000000001FE0000013A7A6A3196310B57A9.jpg + || :width: 4.039in | ++ :height: 3.0638in + || | ++ + || | ++----------------------------------------------------------------------------------------------------------------------------+ Figure 1.1-a: Configuration of buildings juxtaposed [:ref:`bib1 `] .. image:: images/100000000000020D000000B8D8F8A53D2CC751E6.jpg :width: 5.2307in :height: 2.0882in .. _RefImage_100000000000020D000000B8D8F8A53D2CC751E6.jpg: Table 1.1-a: soil in buried foundation configuration [bia1] **The foundation** The surface foundation of the 2 buildings is represented on the [:ref:`Figure 1.1-b
`] below. Two surface models of the foundation complete two skew models of buildings ([:ref:`Figure 1.1-c
`] below). To the initial surface model of 128 plate elements representing the base of the double foundation, 320 very thin plate elements are added to represent the side walls of the :math:`5m` [:ref:`Figure 1.1-b
`] depression. The two configurations of the single-buried building type are juxtaposed, leaving a distance of :math:`60\mathit{cm}` between each floor. .. image:: images/100000000000003D00000056F01C80831F0D9A24.jpg :width: 0.8638in :height: 1.0492in .. _RefImage_100000000000003D00000056F01C80831F0D9A24.jpg: .. image:: images/1000000000000185000000DEB1B99A37A7940224.jpg :width: 3.5528in :height: 2.7311in .. _RefImage_1000000000000185000000DEB1B99A37A7940224.jpg: **Figure 1.1-b: Surface mesh of the foundation** **The building** The building is modelled in 1D by a skewer model composed of 7 non-heavy beams of 5 types and 4 point masses as shown in [:ref:`Figure 1.1-c
`] below: .. image:: images/10000000000000A600000068AE49DF26ACA5FD72.jpg :width: 1.4972in :height: 1.2752in .. _RefImage_10000000000000A600000068AE49DF26ACA5FD72.jpg: .. image:: images/1000000000000070000000F574D7E2DF57FE9CAA.jpg :width: 1.4591in :height: 2.1882in .. _RefImage_1000000000000070000000F574D7E2DF57FE9CAA.jpg: .. image:: images/10000000000000960000008A6D3A26E232DF92F2.jpg :width: 1.2835in :height: 1.5146in .. _RefImage_10000000000000960000008A6D3A26E232DF92F2.jpg: **Figure 1.1-c: Modeling each of the buildings** **Building characteristics:** The characteristics of the beams and masses that were used to model each of the buildings are given in the tables below: +----+-----------+-----------------------------+--------------------------------------------------+-------------------------+-------------------------+ |Mass|Altitude |Mass |Mass inertia (:math:`{10}^{3}{\mathit{kg.m}}^{2}`) | +----+-----------+-----------------------------+--------------------------------------------------+-------------------------+-------------------------+ | |(:math:`m`)|(:math:`{10}^{3}\mathit{kg}`)|:math:`{J}_{\mathit{xx}}` |:math:`{J}_{\mathit{yy}}`|:math:`{J}_{\mathit{zz}}`| +----+-----------+-----------------------------+--------------------------------------------------+-------------------------+-------------------------+ |M1 |10.38 |79.25 |410.72 |482.34 |893.06 | +----+-----------+-----------------------------+--------------------------------------------------+-------------------------+-------------------------+ |M2 |6.25 |104.09 |574.75 |694.04 |1268.79 | +----+-----------+-----------------------------+--------------------------------------------------+-------------------------+-------------------------+ |M3 |4.8 |156.71 |1020.85 |1071.22 |2092.07 | +----+-----------+-----------------------------+--------------------------------------------------+-------------------------+-------------------------+ |M4 |0.8 |316.97 |1846.7 |1844.02 |3690.72 | +----+-----------+-----------------------------+--------------------------------------------------+-------------------------+-------------------------+ **Table 1.1-b: characteristics of the weights of the skewer model provided by NUPEC** [:ref:`bib1 `] +----+----------------------+-----------------------------------+---------------+-----------------+---------------+----------------------------------+ |Beam|Area (:math:`{m}^{2}`)|Moment of inertia (:math:`{m}^{4}`) |Shear coefficient |Torsion constant (:math:`{m}^{4}`)| +----+----------------------+-----------------------------------+---------------+-----------------+---------------+----------------------------------+ | |:math:`A` |:math:`{I}_{z}` |:math:`{I}_{y}`|:math:`{A}_{y}` |:math:`{A}_{z}`|:math:`{J}_{x}` | +----+----------------------+-----------------------------------+---------------+-----------------+---------------+----------------------------------+ |P1 |59.50 |341.33 |341.33 |1/0.93 |1/0.93 |682.70 | +----+----------------------+-----------------------------------+---------------+-----------------+---------------+----------------------------------+ |P2 |8.28 |39.51 |54.77 |2.94 |1.47 |94.30 | +----+----------------------+-----------------------------------+---------------+-----------------+---------------+----------------------------------+ |P3 |63.19 |341.33 |341.33 |1/0.99 |1/0.99 |682.70 | +----+----------------------+-----------------------------------+---------------+-----------------+---------------+----------------------------------+ |P4 |19.78 |148.34 |149.14 |2.13 |2.11 |297.50 | +----+----------------------+-----------------------------------+---------------+-----------------+---------------+----------------------------------+ |P5 |64.00 |341.33 |341.33 |1.00 |1.00 |682.70 | +----+----------------------+-----------------------------------+---------------+-----------------+---------------+----------------------------------+ Table 1.1-c: characteristics of the beams of the brochette model provided by NUPEC [:ref:`bib1 `] The geometry taken into account in *Code_Aster* is that of the structure of buildings as well as their foundation. Geometric and physical ground data are directly given to MISS3D. Material properties ------------------------ **The floor** The mechanical characteristics of the layers of the soil model that were used are those indicated in table 1. **The foundation and the building** .. csv-table:: "E", ":math:`31000\mathit{MPa}`" "NUDE", "0.16" "RHO ", "0." "ALPHA ", "0" Boundary conditions and mechanical loads ------------------------------------------------ Each of the 2 links between a 1D model and its foundation is achieved by a solid link condition between the foundation and the node common to the building model. This knot is blocked and a solid body movement is imposed on the floor. We excite the top of the building model in the direction :math:`Y`, which is the direction of separation between the buildings, with a harmonic loading :math:`F\mathrm{=}{F}_{o}\mathrm{sin}\alpha t` whose force module :math:`{F}_{o}` is :math:`10\mathit{kN}` with a pulsation that varies from :math:`0` to :math:`20\mathit{Hz}` in steps of :math:`0.1\mathit{Hz}`. For the buried configuration, the excitation is applied in the following way: .. image:: images/100000000000003D00000056F01C80831F0D9A24.jpg :width: 0.7701in :height: 0.9689in .. _RefImage_100000000000003D00000056F01C80831F0D9A24.jpg0: .. image:: images/1000000000000150000000E442CDA18300CDB6B5.jpg :width: 3.5043in :height: 2.4098in .. _RefImage_1000000000000150000000E442CDA18300CDB6B5.jpg: Figure 1.3-a: harmonic excitation configuration in a buried foundation