Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The reference solution is obtained analytically for a Timoshenko beam, taking into account the shear force deformation and the rotary inertia of the sections. Theoretical aspects are developed in the reference given in :ref:`2.4 `. Define the following dimensionless quantities: :math:`{\Omega }_{n}=\frac{\rho A{L}^{4}}{\mathit{EI}}{\omega }_{n}^{2}` eigenvalues :math:`j=\frac{I}{A{L}^{2}}` rotary inertia :math:`g=\frac{\mathit{EI}}{k\text{'}AG{L}^{2}}` shear coefficient The natural frequencies of the first modes of flexure are given by the following expression: :math:`{\Omega }_{n}=\frac{(g+j){\lambda }_{n}^{2}+1-\sqrt{{(g-j)}^{2}{\lambda }_{n}^{4}+2(g+j){\lambda }_{n}^{2}+1}}{2gj}` with :math:`{\lambda }_{n}=n\pi`, :math:`n=\mathrm{1,}\mathrm{2,}\mathrm{3,}\mathrm{...}` The frequencies of the expansion modes are given by: :math:`{f}_{n}=(\mathrm{2n}-1)\frac{1}{4L}\sqrt{\frac{E}{\rho }}`, :math:`n=\mathrm{1,}\mathrm{2,}\mathrm{3,}\mathrm{...}` Benchmark results ---------------------- .. csv-table:: "Fashion", "Shape", "Frequency (:math:`\mathit{Hz}`)" "1", "bending", ":math:`115.7`" "2", "bending", ":math:`442.2`" "3", "extension", ":math:`648.6`" "4", "bending", ":math:`931.6`" "5", "bending", ":math:`1534.0`" Uncertainty about the solution --------------------------- * Analytical solution. .. _RefNumPara__3063_280392679: Bibliographical references --------------------------- * ROBERT G., Analytical solutions in structural dynamics, Samtech Report No. 121, Liège, 1996.