E and F models ==================== Objectives --------- The objective of these models is to verify on an element that the modeling of a viscoelastic material whose Poisson's ratio is constant/real and whose complex Young's modulus is equivalent to the modeling of an elastic material with a hysteretic damping coefficient. In isotropic elasticity, the law of behavior is written as: :math:`\sigma =\frac{E}{1+\nu }(ϵ+\frac{\nu }{1-2\nu }\mathit{Tr}(ϵ)\mathit{Id})` So if :math:`E={E}_{r}+j{E}_{i}` then :math:`\sigma =(1+j\frac{{E}_{i}}{{E}_{r}})\frac{{E}_{r}}{1+\nu }(ϵ+\frac{\nu }{1-2\nu }\mathit{Tr}(ϵ)\mathit{Id})` This corresponds to an isotropic elastic material with Young's modulus :math:`{E}_{r}`, Poisson :math:`\nu` and hysteretic damping :math:`\eta =\frac{{E}_{i}}{{E}_{r}}` Geometry --------- As a stiffness matrix construction test, the geometry corresponds to a cube for 3D elements and a square plane for 2D elements. Material properties -------------------- The two declared materials are: * viscoelastic, material 1: :math:`G=\mathrm{0,53e9}+\mathrm{9,3e6}j\mathit{Pa},\nu =\mathrm{0,3}` * elastic, material 2: :math:`E=\mathrm{1,3e9}\mathit{Pa},\nu =\mathrm{0,3,}\eta =\mathrm{1,8e-2}` Characteristics of the models ---------------------------------- .. csv-table:: "Modeling", "Element", "Mesh" "E", "3D", "1 HEXA8" "F", "C_ PLAN ", "1 QUAD4" Tested sizes ----------------- For each model, complex stiffness matrices are constructed: *:math:`{K}_{1}\text{*}` of material 1 *:math:`{K}_{2}\text{*}` of material 2 We then check :math:`{K}_{1}\text{*}={K}_{2}\text{*}`