Reference problem ===================== Geometry --------- .. image:: images/100002000000032B0000023B45BC70DBDBD242CB.png :width: 3.2917in :height: 1.9791in .. _RefImage_100002000000032B0000023B45BC70DBDBD242CB.png: Dimensions of pad :math:`(m)`: length (according to :math:`x`): :math:`0.35` width (according to :math:`y`): :math:`0.25` thickness (according to :math:`z`): :math:`0.01` Elastic properties of the material --------------------------------- :math:`E=1.8\times {10}^{11}\mathrm{Pa}` Young's module :math:`\nu =0.3` Poisson's ratio :math:`\rho =7800.0{\mathrm{kg.m}}^{-3}` Density :math:`\alpha =3\times {10}^{-5}s` :math:`\beta =0.001{s}^{-1}` The coefficients :math:`\alpha` and :math:`\beta` make it possible to build a viscous damping matrix proportional to the stiffness and to the mass :math:`[C]=\alpha [K]+\beta [M]`. Boundary conditions and loads ------------------------------------- * * Embedding the side faces * * * Harmonic pressure of amplitude :math:`p={10}^{5}\mathrm{Pa}` at a frequency :math:`f=1500\mathrm{Hz}` on the upper side