Reference problem ===================== Geometry --------- We consider a periodic network of :math:`4\mathrm{\times }4` beams [:ref:`fig 1.1-a `]. The domain period is :math:`\varepsilon Y`. Figure [:ref:`fig 1.1-b `] represents an enlargement of :math:`1/\varepsilon` of the period. Each beam is straight and has a square cross section. .. image:: images/100025600000153000001FBBAE7DD2C4810357C0.svg :width: 273 :height: 409 .. _RefImage_100025600000153000001FBBAE7DD2C4810357C0.svg: **Figure 1.1-a: Geometry of the heterogeneous medium - Fluidless beams** .. image:: images/1000049A0000102000000C4D64BE3B3C9CDD093A.svg :width: 273 :height: 409 .. _RefImage_1000049A0000102000000C4D64BE3B3C9CDD093A.svg: **Figure 1.1-b: Reference cell** :math:`Y` ****- Magnification of** :math:`\frac{1}{\varepsilon }=10` * Characteristics of the period: * Dimensions: :math:`\varepsilon Y=(0.21m,0.21m)` :math:`a=1.5m` :math:`e=0.3m` * Characteristics of each beam: * Section: :math:`A\mathrm{=}{(\varepsilon \mathrm{\times }a)}^{2}\mathrm{=}{(0.1\mathrm{\times }1.5)}^{2}\mathrm{=}0.0225{m}^{2}` * Length: :math:`L=4.1m` * Bending moment of inertia: :math:`{I}_{x}={I}_{y}={(\varepsilon \times a)}^{4}/12{m}^{4}` Material properties ----------------------- Isotropic linear elastic material: :math:`E={10}^{9}\mathrm{Pa}` :math:`\mathrm{NU}=0.3` Density: Beam: :math:`\mathrm{Rho}=7641\mathrm{kg}/{m}^{3}` Fluid: :math:`\mathit{Rho}\mathrm{=}0\mathit{kg}\mathrm{/}{m}^{3}` (case without fluid) :math:`\mathrm{Rho}=1000\mathrm{kg}/{m}^{3}` (case with fluid) Corrective terms ------------------ The correction terms are calculated on the reference cell :math:`Y` [:ref:`fig 1.1-b `]. .. csv-table:: "B_T= :math:`0.79{m}^{2}`" "B_N= :math:`0.79{m}^{2}`" "B_TN= :math:`0{m}^{2}`" "A_ FLUI = :math:`2.16{m}^{2}`" "A_ CELL = :math:`2.25{m}^{2}`" "COEF_ECHELLE =10" Boundary conditions and loads ------------------------------------- **Case without fluid:** Bottom surface :math:`\mathrm{Sb}`: recessed All degrees of freedom are blocked. Top surface :math:`\mathrm{Sh}`: recessed All degrees of freedom are blocked. **Case with fluid:** Bottom surface :math:`\mathrm{Sb}`: recessed All degrees of freedom are blocked. Top surface :math:`\mathrm{Sh}`: flat support (bilateral connection) All rotations are locked. Longitudinal displacement :math:`\mathrm{DZ}` is blocked. All the nodes in :math:`\mathrm{Sh}` have the same transverse displacement :math:`\mathrm{DX}` and the same normal displacement :math:`\mathrm{DY}`.