Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The calculation is based on the dynamic equilibrium and behavioral relationships [:ref:`bib2 `] as set out below: .. csv-table:: ":math:`\frac{\partial {M}_{y}}{\partial x}+{V}_{z}=⟨\rho I⟩\frac{{\partial }^{2}{\theta }_{y}}{\partial {t}^{2}}` "," :math:`\frac{\partial {V}_{z}}{\partial x}=⟨\rho S⟩\frac{{\partial }^{2}{v}_{z}}{\partial {t}^{2}}`" ":math:`{M}_{y}=⟨EI⟩\frac{\partial {\theta }_{y}}{\partial x}` "," :math:`{V}_{z}=k⟨GS⟩\left(\frac{\partial {v}_{z}}{\partial x}-{\theta }_{y}\right)`" These relationships make it possible to write the equation of transverse dynamic flexure motion :math:`v(x,t)`. The natural frequency equation is obtained after combining the boundary conditions. The natural frequency equation is written as: :math:`\mathrm{sin}({X}_{2})=0` with :math:`{X}_{2}={\left[{\stackrel{ˉ}{\omega }}^{2}\frac{(1+a)}{2}+\sqrt{{\stackrel{ˉ}{\omega }}^{2}({\stackrel{ˉ}{\omega }}^{2}{(\frac{1-a}{2})}^{2}+\frac{1}{{r}^{2}})}\right]}^{1/2}` and :math:`{\overline{\omega }}^{2}=\frac{⟨\rho I⟩{\omega }^{2}{L}^{2}}{⟨EI⟩}`; :math:`{\overline{r}}^{2}=\frac{⟨\rho I⟩}{⟨\rho S⟩{L}^{2}}`; :math:`a=\frac{⟨\rho S⟩⟨EI⟩}{k⟨\rho I⟩⟨GS⟩}` The solutions to the natural frequency equation are then written as: :math:`{X}_{2}=n\pi (n=\mathrm{1,2}\mathrm{,3},\mathrm{...})` Benchmark results ---------------------- 5 first frequencies and associated natural modes of bending. +-------------------------+--------------------------+----------------------------------------------------------------------------------+ | - Mode 1 frequency: |:math:`64.476\mathrm{Hz}` | | + + + .. image:: images/Object_23.svg + | | | :width: 89 | + + + :height: 25 + | | | | + + + + | | | | +-------------------------+--------------------------+----------------------------------------------------------------------------------+ | - Mode 2 frequency: |:math:`131.918\mathrm{Hz}`| | + + + .. image:: images/Object_24.svg + | | | :width: 89 | + + + :height: 25 + | | | | + + + + | | | | +-------------------------+--------------------------+----------------------------------------------------------------------------------+ | - Mode 3 frequency: |:math:`198.734\mathrm{Hz}`| | + + + .. image:: images/Object_25.svg + | | | :width: 89 | + + + :height: 25 + | | | | + + + + | | | | +-------------------------+--------------------------+----------------------------------------------------------------------------------+ | - Mode 4 frequency: |:math:`265.383\mathrm{Hz}`| | + + + .. image:: images/Object_26.svg + | | | :width: 89 | + + + :height: 25 + | | | | + + + + | | | | +-------------------------+--------------------------+----------------------------------------------------------------------------------+ | - Mode 5 frequency: |:math:`331.963\mathrm{Hz}`| | + + + .. image:: images/Object_27.svg + | | | :width: 89 | + + + :height: 25 + | | | | + + + + | | | | +-------------------------+--------------------------+----------------------------------------------------------------------------------+ Uncertainties about the solution ---------------------------- The reference solution is calculated using the assumptions of girder theory [:ref:`bib2 `]: :math:`{\sigma }_{y}={\sigma }_{z}=0`. Bibliographical references --------------------------- 1. VPCS: Software for calculating composite structures; Validation examples. Review of Composites and Advanced Materials, Volume 5 - special issue/ 1995 - Hermes edition. 2. CIEAUX J.M.: Dynamic flexure of composite beams with orthotropic phases; Validity of the quasistatic domain. Thesis from Paul Sabatier University Toulouse III, 1988.