Reference problem ===================== Geometry --------- .. image:: images/Cadre3.gif .. _RefSchema_Cadre3.gif: Image 1.1-1: Sandwich plate geometry. Rectangular sandwich plate composed of three layers of different materials: Side: 0.05m x 0.15m Thickness: aluminum (top): 0.5 mm viscoelastic material (center): 1 mm steel (bottom): 1 mm Material properties ------------------------ The material of the top layer is aluminum (isotropic elastic); its properties are constant: * Young's modulus :math:`E=70000\mathit{MPa}` * Poisson's ratio :math:`\nu =\mathrm{0,3}` * density :math:`\rho =2700\mathit{kg}/{m}^{3}` * hysteretic damping :math:`\eta =\mathrm{0,001}` The material in the bottom layer is steel (isotropic elastic); its properties are constant: * Young's modulus :math:`E=210000\mathit{MPa}` * Poisson's ratio :math:`\nu =\mathrm{0,3}` * density :math:`\rho =7800\mathit{kg}/{m}^{3}` * hysteretic damping :math:`\eta =\mathrm{0,002}` The core layer material is viscoelastic (elastomer); some of its properties are frequency-dependent: .. csv-table:: "Frequency (Hz)", "Real part of Young's modulus :math:`E` (MPa)", "Loss factor :math:`\eta`" "1", "23.2", "1.1" "10", "58", "0.85" "50", "145", "0.7" "100", "203", "0.6" "500", "348", "0.4" "1000", "435", "0.35" "1500", "464", "0.34" Table 1.2-1: Frequency-dependent properties of the viscoelastic material. The others are constant: * Poisson's ratio :math:`\nu =\mathrm{0,45}` * density :math:`\rho =1200\mathit{kg}/{m}^{3}` Boundary conditions and loads ------------------------------------- Boundary conditions: * embedding on one edge of the steel layer. Loading: * nodal force at point A: FZ=1. Initial conditions -------------------- Not applicable (harmonic calculation).