Reference problem ===================== Geometry --------- .. image:: images/10000200000001E4000001A6EC7B0AFDC6CE4BE3.png :width: 3.3709in :height: 2.9425in .. _RefImage_10000200000001E4000001A6EC7B0AFDC6CE4BE3.png: Square plate **:** Length: :math:`l=1.0m` Thickness: :math:`e=0.1m` Material properties ---------------------- Young's module, :math:`E=4.388{10}^{10}N/{m}^{2}` Poisson's ratio, :math:`\nu =0.0` Density, :math:`\rho =2500.0\mathrm{kg}/{m}^{3}` Boundary conditions and loads ------------------------------------- **Boundary conditions:** .. csv-table:: "**L** location", "**Blocked components**" "A1", "DX, DY, DZ, DRX, DRY, DRZ" "A", "DX, DZ, DRX, DRY, DRZ" "C", "DZ, DRX, DRY, DRZ" **Loads:** We apply the linear force on side B in the direction :math:`x`, which depends on time like, :math:`F(t)={Q}_{0}EKe\mathrm{cos}(\mathrm{Kl})\mathrm{sin}(\omega t)`, where the following parameters are used: * :math:`{Q}_{0}` (:math:`={10}^{-4}m`) - load amplitude * :math:`E` — Young's modulus defined above (in :math:`N/{m}^{2}`) * :math:`e` — the thickness defined above (in :math:`m`) * :math:`l` — the plate size defined above (in :math:`m`) * :math:`K` (:math:`=\frac{\pi }{\mathrm{8l}}`) the wave number of the analytical solution (in :math:`{m}^{-1}`) * :math:`\omega` — frequency (times :math:`2\pi`), linked to the wave number :math:`K`, :math:`K=\omega /c`, :math:`c` being the speed of the waves in the structure, :math:`c=\sqrt{\frac{E}{\rho }}` The parameterization introduced makes it possible to apply the load just to obtain the analytical solution, determined simply by the parameters :math:`{Q}_{0}` and :math:`K`, and then by other parameters of the dimensions and material properties of the structure. Initial conditions -------------------- Initially, the movements are zero everywhere and the speeds obey the following spatial distribution, :math:`{v}_{0}(x,y)=\omega {Q}_{0}\mathrm{sin}(\mathrm{K.x})`