Reference problem ===================== Geometry --------- We consider a plate with a height :math:`h=\mathrm{0,1}m`, a width :math:`l=\mathrm{0,05}m` and a thickness :math:`e=0.005m`. A crack is positioned in the middle of the height of the beam, with a depth of :math:`\mathrm{0,1}l` *.* +----------------------------------------------------------------------------------------------------+---------------------------------------------------------------------------------------------+ |Fz y x | | + .. image:: images/Object_1.png + .. image:: images/Object_2.png + | :width: 1.6772in | :width: 2.8965in | + :height: 2.3646in + :height: 2.3984in + | | | + + + | | | +----------------------------------------------------------------------------------------------------+---------------------------------------------------------------------------------------------+ Material properties ----------------------- We consider the classical properties of a steel: .. csv-table:: "Young's module:", ":math:`E={2.10}^{5}\mathrm{MPa}`" "Poisson's ratio:", ":math:`\nu =0.3`" "Density", ":math:`\rho =7800\mathrm{kg}/{m}^{3}`" Boundary conditions and loads ------------------------------------- The plate is: 1. embedded on surface :math:`{S}_{\mathrm{1 }}`; 2. subjected to a :math:`F(t)` force on the :math:`{S}_{2}` surface. The evolution of the :math:`F(t)` standard is shown in the figure above. We take :math:`\tau =\mathrm{0,001}s`. The direction of force :math:`F(t)` is as follows: 1. :math:`F(t)=f(t)\mathrm{.}{e}_{x}` for modeling A; 2. :math:`F(t)=(a{e}_{x}+b{e}_{y}+c{e}_{z})f(t)` for B modeling, with :math:`b=\mathrm{2a}` and :math:`c=0.4a`. For modeling A, we block the movements in the :math:`z` direction (plane problem).