Benchmark solution ===================== Calculation method used for the reference solution -------------------------------------------------------- The advantage of the test here is to calculate and test the modal effort autospectrum obtained from a pressure spectrum characteristic of established turbulent flows. For this case, the mode of travel is imposed. It is therefore not necessary to perform a modal calculation for the structure. The modal force autospectrum, calculated from the static deformation, is written as: :math:`\mathit{DSP}(\omega )\mathrm{=}{S}_{p}(\omega ){J}_{{{A}_{\text{ij}}}_{}}^{2}(w)` The spectrum chosen here is constant and then zero based on a cutoff frequency: .. image:: images/10000200000006A9000005092E78E7DE07EF2274.png :width: 6.3591in :height: 4.8075in .. _RefImage_10000200000006A9000005092E78E7DE07EF2274.png: The pressure spectrum is: :math:`{S}_{{p}_{}}(\omega )\mathrm{=}{K}^{2}({\mathit{\rho U}}^{2}{)}^{2}{d}^{3}` for :math:`\mathrm{0,1}<\frac{\omega d}{2\pi U}<10` With the settings selected, :math:`{S}_{{p}_{}}(\omega )\mathrm{\approx }1.0` The coherence function chosen in the case of this circular cylinder subjected to parallel flow comes from a AU_YANG model: :math:`{r}^{(s)}(x\mathrm{-}x\text{',}\omega )\mathrm{=}{e}^{\mathrm{-}(x\mathrm{-}x\text{'})\mathrm{/}\lambda }\text{cos}(\omega (x\mathrm{-}x\text{'})\mathrm{/}{U}_{c})` :math:`{r}^{(s)}(\theta \mathrm{-}\theta \text{',}\omega )\mathrm{=}{e}^{\mathrm{-}R(\theta \mathrm{-}\theta \text{'})\mathrm{/}\lambda \text{'}}` The parameters :math:`\lambda` and :math:`\lambda \text{'}` are the correlation lengths along the axis and the orthoradial direction respectively. :math:`{U}_{c}` is the axial convective speed of vortices: it is equal to the product of the axial speed coefficient by the fluid speed. The acceptance function is defined by: :math:`{J}_{{{A}_{\text{ij}}}_{}}^{2}(\omega )\mathrm{=}\underset{A}{\mathrm{\int }}\underset{A}{\mathrm{\int }}r(x\mathrm{-}x\text{',}\omega ){f}_{{i}_{\alpha }}(x){f}_{{j}_{\alpha \text{'}}}(x\text{'}){n}_{\alpha }(x){n}_{\alpha \text{'}}(x\text{'})\text{dA}\text{dA}\text{'}` In our case it applies to: :math:`{J}_{{{A}_{\text{nm}}}_{}}^{2}(\omega )\mathrm{=}\underset{A}{\mathrm{\int }}\underset{A}{\mathrm{\int }}{e}^{\mathrm{-}R\mathrm{\mid }\theta \mathrm{-}\theta \text{'}\mathrm{\mid }\mathrm{/}\lambda \text{'}}{e}^{\mathrm{-}R\mathrm{\mid }x\mathrm{-}x\text{'}\mathrm{\mid }\mathrm{/}\lambda }\text{cos}(\frac{\omega (x\mathrm{-}x\text{'})}{{U}_{c}})x\text{cos}\theta x\text{'}\text{cos}\theta \text{'}\mathit{dxRd}\theta \mathit{dx}\text{'}\mathit{Rd}\theta \text{'}` :math:`{J}_{{{A}_{\text{nm}}}_{}}^{2}(\omega )\mathrm{=}\underset{0}{\overset{2\pi }{\mathrm{\int }}}\underset{0}{\overset{2\pi }{\mathrm{\int }}}{e}^{\mathrm{-}R\mathrm{\mid }\theta \mathrm{-}\theta \text{'}\mathrm{\mid }\mathrm{/}\lambda \text{'}}\text{cos}\theta \text{cos}\theta \text{'}{R}^{2}d\theta d\theta \text{'}\underset{0}{\overset{H}{\mathrm{\int }}}\underset{0}{\overset{H}{\mathrm{\int }}}{e}^{\mathrm{-}R\mathrm{\mid }x\mathrm{-}x\text{'}\mathrm{\mid }\mathrm{/}\lambda }\text{cos}(\frac{\omega (x\mathrm{-}x\text{'})}{{U}_{c}})xx\text{'}\text{dxdx}\text{'}` In the following table, values of this integral are given using Python: .. csv-table:: ":math:`\omega (\mathrm{rad}/s)` "," :math:`{I}_{T}(\omega )`" "0.06283", "252.701" "0.6283", "249.663" Benchmark results ---------------------- Analytical result. Bibliographical references -------------------------- 1. ROUSSEAU G., LUU H.T.: Mass, damping and stiffness added for a vibrating structure placed in a potential flow - Bibliography and implementation in the*Code_Aster* - HP-61/95/064. 2. BLEVINS R.D: Formulas for natural frequency and mode shape. Ed. Krieger 1984. 3. ROUSSEAU G. Specification of the acceptance calculation in the*Code_Aster*. Spectral response of structures to random turbulent excitation HP51 /97/027/A