Reference problem ===================== Geometry --------- .. image:: images/Shape1.gif .. _RefSchema_Shape1.gif: Geometry of plate :math:`(m)`: :math:`L=1` :math:`e=0.001` thickness Coordinates of points :math:`(m)`: :math:`O(0.0,0.0)` :math:`E(-0.1,-0.1)` Mesh group: :math:`\mathrm{CONT}\text{\_}\mathrm{NO}`: :math:`\mathrm{AB},\mathrm{BC},\mathrm{CD},\mathrm{DA}` sides :math:`\mathrm{COND2}\text{\_}\mathrm{NO}`: Face :math:`\mathrm{ABCD}` except point :math:`E` Elastic properties of the material --------------------------------- * :math:`E=7.1E10\mathrm{Pa}` Young's module * :math:`\nu =0.3` Poisson's ratio * :math:`\rho =7820.0{\mathrm{kg.m}}^{-3}` Density * :math:`\mathrm{AMOR}\text{\_}\mathrm{ALPHA}=0.5{\mathrm{N.s.m}}^{-1}` * :math:`\mathrm{AMOR}\text{\_}\mathrm{BETA}=0.1{\mathrm{N.kg}}^{-1}` * * The coefficients :math:`\alpha` and :math:`\beta` make it possible to build a viscous damping matrix that is proportional to stiffness and mass: :math:`[C]=\alpha [K]+\beta [M]`. Boundary conditions and loads ------------------------------------- * * Imposed travel: * * * * :math:`\mathrm{CONT}\text{\_}\mathrm{NO}`: zero movements and rotations * :math:`\mathrm{COND2}\text{\_}\mathrm{NO}`: zero movements and rotations * * * Excitation force :math:`(N)`: * * * * Point :math:`E`: :math:`\mathrm{Fz}=1`