2. Benchmark solution#
2.1. Calculation method used for the reference solution#
For thin spheres (\(\mathrm{i.t}\ll R\) with \(i\), order of mode), the natural modes with radial and tangential displacement established by a membrane theory are given by [bib1] and [bib2]:
\({f}_{i}=\frac{{\lambda }_{i}}{2\pi R}\sqrt{\frac{E}{\rho (1-{\nu }^{2})}}\)
with \({\lambda }_{i}=\frac{1}{\sqrt{2}}\sqrt{b\pm \sqrt{{b}^{2}-4(1-{\nu }^{2})({i}^{2}+i-2)}}\) and \(b={i}^{2}+i+1+3\nu\)
The theory presented by Hayek makes it possible to introduce a correction of the flexure effect (approximation of the general Wilkinson theory) which leads to values of \({\lambda }_{i}\) as a function of
\(\begin{array}{}a={t}^{2}/12{R}^{2}\\ b=i(i+1)\end{array}\)
and solution of:
\({\lambda }_{i}^{4}-{\lambda }_{i}^{2}[1+3\nu -a(1-\nu )+b(1+a\nu +\mathrm{ab})]+\mathrm{ab}[{b}^{2}-\mathrm{4b}+5-{\nu }^{2}]+(1-{\nu }^{2})[b-2(1+a)]=0\)
2.2. Benchmark results#
Natural frequencies:
i |
Natural frequencies |
2 |
237.25 |
3 |
282.85 |
4 |
305.24 |
5 |
324.17 |
6 |
346.76 |
7 |
376.68 |
8 |
|
9 |
465.75 |
10 |
526.20 |
2.3. Uncertainty about the solution#
Analytical solution.
2.4. Bibliographical references#
Sheet VPCS SDLS 07/89 in the Structural Analysis Software Validation Guide/ SFM AFNOR TECHNIQUE 1990.
HAYEK: « Vibrations of a spherical shell in acoustic medium », Journal of the Acoustical Society of America, Vol. 40, 2, 1996, pp. 342-348