Reference problem ===================== Geometry --------- .. image:: images/100004240000181500000C81B3C9BDB981A2B23F.svg :width: 310 :height: 161 .. _RefImage_100004240000181500000C81B3C9BDB981A2B23F.svg: Or a plate whose characteristics are as follows: .. csv-table:: "length: :math:`a=1.5m` ", "width: :math:`b=1m` ", "thickness: :math:`t=0.01m`" The characteristic points of the plate have the following coordinates: .. csv-table:: "", ":math:`A` "," :math:`B` "," :math:`C` "," :math:`D`" ":math:`x` ", "0. ", "0. ", "1. ", "1." ":math:`y` ", "0. ", "1.5", "1.5", "1.5", "0." ":math:`z` ", "0. ", "0. ", "0. ", "0." Material properties ------------------------ The parameters characterizing the properties of the material are: .. csv-table:: ":math:`E=2.1{10}^{\mathrm{11 }}\mathrm{Pa}` "," :math:`\nu =0.3` "," :math:`\rho =7800\mathrm{kg}/{m}^{3}`" Boundary conditions and loads ------------------------------------- Flexion problem ~~~~~~~~~~~~~~~~~~~~~ The plate is easily supported on all sides: for any point :math:`P` on the edge we have: :math:`w=0`. Membrane problem ~~~~~~~~~~~~~~~~~~~~~~ For all points on the plate, we block the movement in :math:`z` and the three degrees of rotation, that is to say: :math:`w=0.` :math:`{\theta }_{x}={\theta }_{y}={\theta }_{z}=0.` On the sides :math:`\mathrm{AD}` and :math:`\mathrm{BC}` we block the movement in :math:`y`: for :math:`y=0.` or :math:`y=a` we have :math:`v=0`. At points :math:`A,B,C,D`, springs with a stiffness of :math:`k` are attached. The axis of these springs is the :math:`x` direction. .. image:: images/10000712000018CE00000B0F086A97A8D3B0E151.svg :width: 310 :height: 161 .. _RefImage_10000712000018CE00000B0F086A97A8D3B0E151.svg: The numeric value for :math:`k` is :math:`k=25N/m`.